LASER

Ms. R.GOWTHAR Assistant Professor Department of physics Jamal Mohamed College Trichy-20

LASER

LASER stands for 'Light Amplification by Stimulated Emission of Radiation'

Laser is a very intense, concentrated, highly parallel and monochromatic beam of light.

Coherence is very important property of Laser.

Incoherent Light:

The light emitted from the Sun or other ordinary light sources such as tungsten filament and fluorescent tube lights is spread over a wide range of frequencies.

For eg. Sunlight is spread over Infra Red, Visible light and Ultra Violet spectrum. So, the amount of energy available at a particular frequency is very less and hence less intense.

Such light is irregular and mixed of different frequencies, directions and durations, and is incoherent.

Incoherent light is due to spontaneous and random emission of photons by the atoms in excited state. These photons will not be in phase with each other.

Incoherent Light

Laser light differs from ordinary light

Light Amplification by Stimulated Emission of Radiation

Physics and Radio-Electronics

Physics and Radio-Electronics

Stimulated emission

Physics and Radio-Electronics

Difference between spontaneous and stimulated emission

Spontaneous	stimulated
 Emission of light photon takes place immediately without any inducement. 	1. Emission of a light photon is by inducement of a photon having energy equal to the emitted photon energy.
2. Polychromatic radiation	2. Monochromatic radiation
3. Incoherent radiation	3. Coherent radiation
4. Less directionality	4. High directionality
5. Less intense	5. High intense

snistforum.com

Metastable states

Normally an electron in an excited state will make the transition to a lower state in a time of 10⁻⁷s. In contrast an electron may stay in a metastable state for 10⁻³s.

Metastable states

To achieve population inversion we must have metastable states. These are excited states where electrons stay for unusually long times.

Lecture-3

Population inversion

For light amplification by stimulated emission of radiation the population of excited state must be greater than the population of lower energy state. This condition is called population inversion. • Laser pumping: refers to introducing energy into a laser system to produce a population inversion, where there are more atoms or molecules in an excited state than in the ground state. This increases the probability of stimulated emission of light and enables lasing to occur.

UNIVERSITY

DIFFERENT PUMPING MECHANISMS :

- *i.* <u>Optical pumping</u>: Exposure to electromagnetic radiation of frequency $\upsilon = (E_2-E_1)/h$ obtained from discharge flash tube results in pumping Suitable for solid state lasers.
- *ii. <u>Electrical discharge</u> :* By inelastic atom-atom collisions, population inversion is established.

Suitable for Gas lasers

iii. <u>Chemical pumping</u>: By suitable chemical reaction in the active medium, population of excited state is made higher compared to that of ground state Suitable for liquid lasers. *iv.* <u>Optical resonator</u>: A pair of mirrors placed on either side of the active medium is known as optical resonator. One mirror is completely silvered and the other is partially silvered. The laser beam comes out through the partially silvered mirror.

Applications of laser

- Medicine: bloodless surgery, laser healing
- Industry: Cutting, welding, material heat treatment
- Defense: marking targets, missile defense
- Research: spectroscopy, laser scanning
- Commercial: laser printer, CDs, barcode scanners
- Aesthetics: laser light shows

Laser Applications						
Laser Applications						
Daily Applications	Medical Applications	Scientific Applications	Industrial Applications	Military Applications	Special Applications	
 Compact disk Laser printer Optical disc drives Optical computer 	 Surgery: Eyes General Dentistry Dermatology Diagnostic Fluores 	Research Spectroscopy Nuclear Fusion Cooling Atoms 	 Measurements Straight Lines <u>Material Processing</u> Spectral Analysis 	• Target designatio	er • Energy Transpor n • Laser Gyroscope • Fiber Lasers	
 Bar code scanner Holograms against Fiber optic community Free space community Laser shows Holograms Kinetic sculptures 	Soft Laser forgery Inications	•Short Pulses, Study of Fast Processes	of			

