M.PHIL - COMPUTER SCIENCE

SEM.	COURSE CODE	COURSE	COURSE TITLE	HRS/ WEEK	CREDIT	CIA MARK	ESE MARK	TOTAL MARK
	20MPCS1CC1	CORE I	Research Methodology	4*	4	25	75	100
	20MPCS1CC2	CORE II	Advanced Concepts in Computer Science	4*	4	25	75	100
I	20MPCS1CC3	CORE III	Teaching and Learning Skills (common paper)	4*	4	25	75	100
	20MPCS1CC4	CORE IV (ELECTIVE)	Paper On Topic of Research (The syllabus will be prepared by the Guide and Examination will be conducted by the COE)	4*	4	25	75	100
			TOTAL	16	16			400
н	20MPCS2PD		Dissertation##	-	8	-	-	200
			GRAND TOTAL	16	24			600

(Evaluation of the Dissertation shall be made jointly by the Research Supervisor and the External Examiner)

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC1	CORE – I	RESEARCH METHODOLOGY	4	4	100	25	75

Students will be able to

- 1. Practice mixture levels of Research insights like good design, approaches, significance, scientific methods, process, and its importance.
- 2. Classify and summarize the relevant literature survey, write journal review articles, and publish a good quality paper followed by planning thesis content.
- 3. State the reliability, data analysis and applications to specific hazard models.
- 4. Express the significance of samples, procedure for different testing hypotheses.
- 5. Demonstrate diverse kinds of advanced computing related research tools towards societal developments.

UNIT I

Introduction to Research: Meaning of Research – Objectives of Research – Motivation in Research – Types of Research - Research Approaches - Significance of Research - Research Methods versus Methodology - Research and Scientific Method – Importance of knowing how research is done – Research Process – Criteria of Good Research – Defining the Research Problem – Selecting the Problem – Necessity – Techniques involved in defining a problem – Research Design - Meaning - **#Need#** - Features of Good Design.

UNIT II

Thesis Writing: Literature Survey – Writing Reviews and Journal Articles – Publication of Papers – Planning a Thesis – General Format – Page and Chapter Format – **#Footnotes#** – Tables and Figures – References and Appendices.

UNIT III

Reliability: Definition of Reliability – Failure-Data Analysis - Hazard Models – Constant Hazard – Linearly-Increasing Hazard – The Weibull Model – # System Reliability # – Series Configuration – Parallel Configuration – Mixed Configuration – Applications to Specific Hazard Models – Related Problems.

UNIT IV

Sampling Theory and Testing of Hypotheses: Types of Samples – Parameter and Statistic – Tests of Significance – Procedure for Testing Hypothesis – Applications of t-test – t-test for Single Mean – Paired t-test for difference of means - F-test for equality of two Population variances - Analysis of Variance - Assumptions - Technique of Analysis of Variance - One Way Classification Model - Two Way Classification Model.

UNIT V

Research Tools: Introduction - SPSS - MATLAB - LaTeX - NS/2 - # Weka #

...... # Self-study portion

12 hours

12 hours

12 hours

12 hours

Text Books:

- 1. C.R. Kothari, *Research Methodology Methods and Techniques*, Wiley Eastern limited, 2nd Edition, 2004.
- UNIT I Chapters: 1, 2 and 3
- 2. Janathan Anderson, Berry H. Durston, Millicent Poole, *Thesis and Assignment Writing*, Wiley Eastern Limited, 2092.

UNIT II

3. L.S. Srinath, *Reliability Engineering*, Affiliated East-West Press Pvt. Ltd., New Delhi, Fourth Edition, Reprint 2009. Chapters: 2, 3, 4.1 to 4.4, 6.1 to 6.5

UNIT III

4. S.C. Gupta, V.K. Kapoor, *Fundamentals of Mathematical Statistics*, Sultan Chand & Sons, New Delhi, 11th Edition, 2002. Chapters: 14.1 to 14.6, 16.3.1, 16.3.3

UNIT IV

5. S.P. Gupta, *Statistical Methods*, Sultan Chand & Sons Publishers, New Delhi, Fortieth Revised Edition, 2011. Volume II, Chapter 5

UNIT IV

6. Web site References **UNIT V**

Books for Reference:

1. Hunt / Lipsman / Rosenberg, A Guide to MATLAB: For beginners and experienced users, 3rd edition, Cambridge University Press, 2014.

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester	Co	de		Title of t	ne Course		Но	urs	Cre	dits	
I	20MP	CS1CC1	RES	EARCH M	ethodol	OGY	4		4		
Course		Programr	ne Outco	mes (POs)		Prog	ramme Specific Outcomes (PSOs)				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	✓	~		~		~	~		~		
CO2	\checkmark	✓	~	~		~	~	~	~	~	
CO3	\checkmark	✓	~	~		~	~	~		~	
CO4	\checkmark	✓		~	~	~	~	✓	~		
CO5	\checkmark	√	✓	✓	~	✓	✓	✓	✓	✓	
		N	umber of	matches (√) = 41,	Relations	hip: High	1	1		

Prepared by:

1. Dr. M. Mohamed Surputheen

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Checked by:

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC2	Core – II	ADVANCED CONCEPTS IN COMPUTER SCIENCE	4	4	100	25	75

Students will be able to

- 1. Analyze and design algorithms by way of proposing alternate solutions.
- 2. Infer the design concepts of combinational and sequential logic implementation
- 3. Identify and match the parallel computer structures and its applications.
- 4. Illustrate the genetic structures and relate applications of GA for different problems.
- 5. Employ the knowledge of HCI paradigms, design rules, patterns and implementation and evaluation techniques with respect to user support.

UNIT I

Design and Analysis of Algorithm: Analyzing and Designing Algorithms – Heap Sort – Quick Sort – Hash Tables – Binary Search Trees – Red-Black Trees – Dynamic Programming – Greedy Algorithms – B-Trees – Graph Algorithms – Minimum Spanning Trees – **#Single-Source Shortest Paths#** – All-Pairs Shortest Paths.

UNIT II

Digital Logic Circuit Design: Design of Combinational Circuits: Analysis Procedure – Design Procedure – Design of Course Code Converters – Implementation of Boolean Functions using Multiplexers – Design of Sequential Circuits: Analysis Procedure – Design Procedure – Design of Counters – Design with State Equations – Sequential Logic Implementation – # Design of Serial Adder using Sequential Logic Procedure # – Design of Accumulator.

UNIT III

Parallel Processing: Parallel Computer Structures – Architectural Classification Schemes – Parallel Processing Applications – Pipelining : An Overlapped Parallelism – Instruction and Arithmetic Pipelines – Principles of Designing Pipelined Processors – SIMD Array Processors – SIMD Interconnection Networks – Associative Array Processing – Multiprocessors Architecture and Programming – Functional Structures – Interconnection Networks – # Multiprocessor Scheduling Strategies #.

UNIT IV

Genetic Algorithm: Introduction to Genetic Algorithm – Working principle of GA – Differences between Genetic Algorithm and Traditional Methods – Terminology used in Genetic Algorithm – Genetic Operators – Selection – Crossover – Mutation – Parameters of GA – Designing the Genetic Structures – # Applications of Genetic Algorithm for Simple Optimization Problem # – Travelling Sales Man Problem – Other Applications.

UNIT V

Human Computer Interaction: The Human: Introduction – Human Memory – Thinking – Emotion – The Computer: Positioning, Pointing, and drawing - The Interaction: Models of interaction - Frameworks and HCI - Ergonomics -Paradigms: Paradigms for interaction – HCI in the software process: Usability Engineering – Design rationale – # Design Rules: Standards # – Guidelines – Golden rules and heuristics – HCI Patterns – Implementation Support: Programming the application – Evaluation Techniques: Goals of evaluation – Evaluation through expert analysis – Universal Design: Universal design principles – Multi-modal interaction – User Support: Requirements of user support – Approaches to user support.

...... # Self-study portion

12 hours

12 hours

12 hours

12 hours

Text Books:

- 1. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, Clifford Stein, *Introduction to Algorithms*, PHI, Third Edition, 2010.
- 2. M. Morris Mano, *Digital Logic and Computer Design*, Pearson Education, 2008.
- 3. M. Morris Mano, *Digital Design*, Prentice Hall of India, 3rd Edition, 2002.
- 4. Stephen Brown, ZvonkoVranesic, Fundamentals of Digital Logic with Verilog Design, Tata McGraw Hill, 2004.
- 5. Kai Hwang and Faye A. Briggs, *Computer Architecture and Parallel Processing*, McGraw Hill International Edition in Computer Science Series, 2085.
- 6. David E. Goldberg, *Genetic Algorithms in Search, Optimization and Machine Learning*, Addison Wesley.
- 7. M. Mitchell, An Introduction to Genetic Algorithms, Prentice-Hall.
- 8. Z. Michalewicz, *Genetic Algorithms + Data Structures = Evolution Programs*, Springer-Verlag.
- 9. Alan Dix, Janet Finlay, Gregory D. Abowd, Russell Beale, *Human–Computer Interaction*, Pearson Education, Third Edition, 2008.
- UNIT-V Chapter-1 Section (1.1, 1.3-1.5), Chapter-2 (2.3), Chapter-3 Section (3.2-3.4), Chapter-4 (4.2) Chapter-6 Section (6.3, 6.5), Chapter-7 Section (7.3-7.7), Chapter-8 Section (8.3), Chapter-9 Section (9.2, 9.3), Chapter-10 Section (10.2, 10.3), Chapter-11 Section (11.2, 11.3)

Books for Reference:

1. John M. Carroll, Human Computer Interaction in the new millennium, Pearson Education, 2007.

Semester	Со	de		Title of th	ne Course		Но	urs	Cre	dits	
I	20MP0	CS1CC2		VANCED (COMPUTE		-		4	4		
Course		Programr	ne Outcoi	nes (POs)		Prog	gramme Specific Outcomes (PSOs)				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	\checkmark	\checkmark	✓	\checkmark	~		~	~	~	~	
CO2	✓		✓	✓			~	~	✓		
CO3	\checkmark		✓	\checkmark	✓		~	~	✓	~	
CO4	\checkmark	\checkmark	✓	\checkmark		~	~	~	✓		
CO5	\checkmark	\checkmark	✓	\checkmark	~	~	~	~	✓	~	
		N	umber of	matches (✓) = 41,	Relationsl	hip: High				

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Prepared by:

1. Dr. D.I George Amalarethinam

Checked by: 1. Dr. G. Ravi

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC3	Core – III	TEACHING AND LEARNING SKILLS	4	4	100	25	75

Students will be able to

- 1. Outline the concepts of E-learning, types and standards of E-learning.
- 2. Practice the motivation behind learning cognition and discover the careers in educational psychology.
- 3. Synthesize the composite factors of soft skills towards attitude, team building and group dynamics.
- 4. Prepare the E-Contents and lesson plan for teaching subjects.
- 5. Predict and sketch the teaching practices in programming languages, core subjects of computer science and mathematical methods.

UNIT I

E-Learning - Types of E-Learning - Blended Learning - Standard Learning - Component of E-Learning - # Standards of E-Learning #.

UNIT II

Educational Psychology: Introduction – Social, Moral and Cognitive Development – Learning and Cognition – Motivation – # Research Methodology # – Application in Instructional Design and Technology – Application in Teaching Careers in Educational Psychology.

UNIT III

Soft Skills: Attitude and Altitude – Lateral Thinking – Time is Money – Are Leaders Born or Made – Team Building – Inter-Personal Skills – Business Communication in English – Presentation Skills – Business Correspondence – Interviews - Group Dynamics - # Internet for Job Seekers #.

UNIT IV

Computer Practical Session: Preparation of E-Content - # Lesson Plan Preparation for Teaching #.

UNIT V

Teaching Practices in Computer Science Subjects: Programming Languages – Computer Networks – Computer Graphics – Simulation and Modeling – Data Structures and Algorithms – Parallel Processing – Multimedia Systems and Design – Computer Organization and Architecture – Principles of Compiler Design – Numerical and Statistical Methods Optimization Techniques – #Operating Systems# – Artificial Intelligence and Expert Systems – Web Technology.

...... # Self-study portion

Text Books:

- 1. G. Ravindran, S.P.B.Elango and L. Arockiam, Success Through Soft Skills, Institute for Communication and Technology, Tiruchirappalli, 2nd Edition, 2008.
- 2. Jack Snowman and Robert Biehler, *Psychology Applied to Teaching*. HMH, 8th Edition, 2097.
- 3. Web site references: www.kontis.net, en.wikipedia.org.

Books for Reference:

1. Som Naidu, E-Learning: A Guide book of Principles, Procedures, and Practices, 2nd Revised Edition, **CEMCA**, 2006

12 hours

12 hours

12 hours

12 hours

Semester	Co	de		Title of th	ne Course		Но	urs	Credits	
I	20MPC	CS1CC3	TEACHI	NG AND I	EARNING	SKILLS	LS 4 4			
Course		Programr	ne Outcor	mes (POs)		Prog	amme Specific Outcomes (PSOs) PSO2 PSO3 PSO4 PSO5 v v			
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	\checkmark	✓			✓	✓			✓	✓
CO2	✓	\checkmark		\checkmark	✓	✓	✓		✓	✓
CO3	✓	✓		✓	✓	~	~		~	✓
CO4	✓	\checkmark	✓		✓	✓	✓	✓	✓	✓
CO5	✓	✓	✓	✓	~	~	~	~	~	✓
		N	umber of	matches (√) = 41,	Relationsl	hip: High			

Prepared by:

Checked by:

1. Dr. A.R. Mohamed Shanavas

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC4	CORE – IV (ELECTIVE)	WIRELESS SENSOR NETWORKS	4	4	100	25	75

Students will be able to

- 1. Analyze an overview of Wireless Sensor Networks (WSNs), its applications and trends.
- 2. Define Wireless transmission technology, MAC protocols and some standard case study.
- 3. Illustrate Routing protocols, challenges, design issues and techniques.
- 4. List the TCPs for WSN, and design issues related to network management.
- 5. Indicate the Operating Systems for WSNs and predict the performance & traffic management.

UNIT I

Introduction and Overview of Wireless Sensor Networks – Applications of Wireless Sensor Networks – Basic Wireless Sensor Technology, Sensor Taxonomy, Wireless Network Environment, **# Wireless Network Trends #**.

UNIT II

Wireless Transmission Technology – Radio Technology primer, Available Wireless Technologies – Fundamentals of Medium Access Control (MAC) Protocols – MAC Protocols for WSNs: Schedule-Based Protocols and **# Random-Access Based Protocols#** – Case Study, IEEE 802.15 4LR WPAN, Standard Case Study.

UNIT III

Routing protocols for WSNs: Data Dissemination and Gathering – Routing Challenges and Design Issues: Network Scale and Time-Varying Characteristics – Resource Constraints – Routing Strategies in WSN – Energy Aware Routing, WSN Routing Techniques, Flooding and its Variants – Low-Energy Adaptive Clustering Hierarchy – Power-Efficient Gathering in Sensor Information Systems – **#Directed Diffusion#** – Geographical Routing.

UNIT IV

Transport Control Protocols for Wireless Sensors Network – **# Traditional Transport Control Protocol #,** Transport Protocol Design Issues, Examples of Existing Transport Control Protocol, Performance of TCP – Network Management for WSNs: Network Management Requirements – Network Management Design Issues – Issues Related to Network Management: Naming and Localization.

UNIT V

Operating Systems for WSNs: Operating System Design – Examples of Operating Systems – Tiny OS, Mate and MANTIS – Performance and Traffic Management: Performance Modeling – Performance Metrics – Basic Network Models – Simple Computation of System Life Span – **# WSN Applications #**.

...... # Self-study portion

Text Book:

1. KazemSohraby, Daniel Minoli and TaiebZnati, Wireless Sensor Networks – Technology, Protocols and Applications, Wiley, 2007

Books for Reference:

1. Dr Ian F. Akyildiz, Mehmet Can Vuran, Wireless Sensor Networks, Wiley Online Library, 2010

12 hours

12 hours

12 hours

12 hours

Semester	Co	de		Title of th	ne Course		Но	ours	Cre	dits	
I	20MP0	CS1CC4	WIREI	LESS SENS	OR NETV	VORKS		4			
Course		Program	ne Outcoi	mes (POs)		Prog	ramme Specific Outcomes (PSOs)				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	\checkmark	✓		✓		✓	✓		✓	~	
CO2	\checkmark	✓	✓	✓		~	~		~	~	
CO3	\checkmark	✓	✓	✓	✓	~	~		~	~	
CO4	✓	✓	✓	~	✓	~	~	~	~	~	
CO5	\checkmark	✓	✓	✓ ✓ ✓ ✓ ✓ ✓					~	~	
		N	umber of	matches (√) = 44,	Relations	hip: High				

Prepared by:

1. Dr. D.I George Amalarethinam

Checked by:

1. Dr. G. Ravi

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC4	CORE – IV (ELECTIVE)	GRID COMPUTING	4	4	100	25	75

Students will be able to

- 1. Acquire knowledge of Grid computing
- 2. To provide knowledge on various grid computing organizations
- 3. To understand concepts of virtualization
- 4. Acquire the concepts of SOA
- 5. To gain knowledge on grid and web service architecture

UNIT I

Introduction: Early Grid Activity, Current Grid Activity, Overview of Grid Business areas, Grid Applications, Grid Infrastructures.

UNIT II

Grid Computing organization and their Roles: Organizations Developing Grid Standards, and Best practice Guidelines, Global Grid Forum (GCF), #Organization Developing Grid Computing Toolkits and Framework#, Organization and building and using grid based solutions to solve computing, commercial organization building and Grid Based solutions.

UNIT III

Grid Computing Anatomy: The Grid Problem, The conceptual of virtual organizations, # Grid Architecture # and relationship to other distributed technology.

UNIT IV

The Grid Computing Road Map: Autonomic computing, Business on demand and infrastructure virtualization, Service-Oriented Architecture and Grid, #Semantic Grids#.

UNIT V

Merging the Grid services Architecture with the Web Services Architecture: Service-Oriented Architecture, Web Service Architecture, #XML messages and Enveloping#, Service message description Mechanisms, Relationship between Web Services and Grid Services, Web services Interoperability and the role of the WS-I Organization.

...... # Self-study portion

Text Book:

1. Joshy Joseph and Craig Fellenstein, Grid computing, Pearson / IBM Press, PTR, 2004.

Books for Reference:

1. Ahmer Abbas and Graig computing, A Practical Guide to technology and applications, Charles River Media, 2003.

12 hours

12 hours

12 hours

12 hours

Semester	Со	de		Title of th	ne Course	2	Но	ours	Cre	dits
I	20MPC	CS1CC4	GRID COMPUTING 4					4		
Course		Programn	ne Outco	mes (POs)		Prog	ramme S	pecific Ou	tcomes (F	PSOs)
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	\checkmark		✓	✓	\checkmark	~	~	~	~	~
CO2	✓	✓		~	✓	✓	~	~	~	~
CO3	✓		~	~	✓	✓	~	~	~	
CO4	✓			~	✓	~	~	~	~	
CO5	✓	✓	~	~	~	~	~	~	~	~
	Number of matches (\checkmark) = 43, Relationship: High									

Prepared by:

1. Dr. D.I George Amalarethinam

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Checked by:

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC4	CORE – IV (ELECTIVE)	DATA MINING	4	4	100	25	75

Students will be able to

- 1. Examine the types of the data to be mined and present a general classification of tasks and primitives tointegrate a data mining system.
- 2. Discover interesting patterns from large amounts of data to analyze and extract patterns to solve problems, make predictions of outcomes.
- 3. Select and apply proper data mining algorithms to build analytical applications.
- 4. Cluster the high dimensional data for better organization of the data
- 5. Comprehend the roles that data mining plays in various fields and manipulate different data miningtechniques UNIT I 12 hours

Data Mining Functionalities – Classification of Data Mining Systems – Data Mining Task Primitives – Integration of a Data Mining System with a Database or Data Warehouse System – Major Issues in Data Mining – Data Preprocessing – Descriptive Data Summarization – #Data Cleaning# – Data Integration and Transformation – Data Reduction – Data Discretization and Concept Hierarchy Generation.

UNIT II

Mining Frequent Patterns, Associations, and Correlations – Efficient and Scalable Frequent Itemset Mining Methods – Mining Various Kinds of Association Rules – From Association Mining to Correlation Analysis – Constraint-#Based Association Mining#.

UNIT III

Classification and Prediction – Issues Regarding Classification and Prediction – Classification by Decision Tree Induction - Bayesian Classification - Rule-Based Classification - Classification by Back propagation - Associative Classification -Lazy Learners – Prediction – #Accuracy and Error Measures# – Evaluating the Accuracy of a Classifier or Predictor – Model Selection.

UNIT IV

Cluster Analysis – Types of Data in Cluster Analysis – A Categorization of Major Clustering Methods – Partitioning Methods – Hierarchical Methods – Density-Based Methods – Grid – Based Methods – Model-Based Clustering – Clustering High-Dimensional Data – Constraint – Based Cluster – Outlier Analysis.

UNIT V

Mining Data Streams – Social Network Analysis – Spatial Data Mining – Multimedia Data Mining – Text Mining – Mining the World Wide Web – # Applications and Trends in Data Mining #.

...... # Self-study portion

Text Book:

1. Jiawei Han, MichelineKamber, Data Mining: Concepts and Techniques, Morgan Kaufmann Publishers, Second Edition, 2006.

Books for Reference:

- 1. Margaret H. Dunham, Data Mining, Introductory and Advanced Topics, Prentice Hall, 2002.
- 2. Ian H. Witten, Eibe Frank, Mark A. Hall, Data Mining Practical Machine Learning Tools and Techniques, Morgan Kaufmann Publishers, Third Edition, 2011
- 3. G.K. Gupta, Introduction to Data Mining with Case Studies, Prentice Hall of India, 2008

12 hours

12 hours

12 hours

Semester	Со	de		Title of th	ne Course		Но	urs	Cre	dits
I	20MPC	CS1CC4	DATA MINING					4	4	
Course		Programn	ne Outcoi	e Outcomes (POs) Programme Specific Outc				tcomes (F	PSOs)	
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	✓		✓	✓	✓	~	~	~	✓	✓
CO2	✓	✓	✓		✓	~		~	~	✓
CO3	✓		✓	✓	✓	~	~	~	✓	✓
CO4	✓		✓		✓	~	~	~	✓	
CO5	✓	✓	\checkmark	✓	~	~	~	~	~	✓
	Number of matches (✓) = 42, Relationship: High									

Prepared by:

1. Dr. T. Abdul Razak

Checked by:

1. Dr. G. Ravi

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC4	Core – IV	SOFTWARE METRICS	4	4	100	25	75

Students will be able to

- 1. Impart knowledge on software measurement principles and practices
- 2. Understand the scope of software measures
- 3. Get exposure in software data collection
- 4. Understand various traditional metrics
- Apply the Object-Oriented Concepts

UNIT I

12 hours

Measurement in Software Engineering - The scope of software Metrics- The basics of measurement- The representational theory of measurement and models - Scales- Classification of software measures - Empirical investigation - Planning formal experiments.

UNIT II

Software metrics data collection - Storing and extracting. Analyzing the results of experiments - Simple analysis technique - Advanced methods – Statistical tests- Measuring internal product attributes- Reuse - Complexity.

UNIT III

Overview - Benefits of Software Measurement - Challenges in Software Measurement- Basic Object-Oriented Concepts - Properties of Metrics - Traditional and Object Oriented Metrics - Traditional Metrics Applied toOO Systems- Object Oriented Metrics - Chidamber and Kemerer's Metrics Suite - # MOOD (Metrics for Object Oriented Design) Lorenz and Kidd's suite of design metrics#.

UNIT IV

Cognitive Complexity Metrics - Cognitive Complexity Metrics for Procedure Oriented System - Cognitive Complexity Metrics for Object Oriented System. Class Complexity (CC) - Weighted Class Complexity (WCC) – Extended Weighted Class Complexity (EWCC) - Class Complexity due to Inheritance (CCI) - # Cognitive Code Complexity (CCC)# - Weighted Composite Complexity Measure (CwP).

UNIT V

Overview- Defining the Metric: AWCC - Calibration of Cognitive Weights for Attributes - Experimentation and Case Study - Analytical Evaluation of AWCC Comparison of AWCC with Existing Metrics. Defining the Metric:CWCBO -Calibration of Cognitive Weights for Couplings – Experimentation and Case Study - # Analytical Evaluation of CWCBO #- Comparison of CWCBO with CBO.

...... # Self-study portion

Text Book:

1. Norman E. Fenton and Shari Lawrence Pfleeger, "Software Metrics: A Rigorous and Practical Approach", PWS Publishing Company, USA, 3rd Edition, 2014.

2. Metrics and Models in Software Quality Engineering Second Edition Stephan H.Kan. 2007

Books for Reference:

1. Stephen H. Kan, *Metrics and Models in Software Quality Engineering*, Pearson Education, 2nd Edition, 2007.

2 hours

12 hours

12 hours

Semester	Со	de		Title of th	ne Course		Но	urs	Cre	dits
I	20MPC	CS1CC4	SOFTWARE METRIC			S	4 4			4
Course		Programn	ramme Outcomes (POs) Programme Specific Outcomes (P					PSOs)		
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	~			~	\checkmark	✓	~		\checkmark	
CO2	~			~	\checkmark	✓	~			✓
CO3	✓	✓	\checkmark	✓		~	~	~	√	~
CO4	✓		\checkmark	✓	\checkmark	~	~	~	✓	✓
CO5	✓	✓	\checkmark	✓						✓
	Number of matches (✓) = 40, Relationship: High									

Prepared by:

1. Dr. O.A Mohamed Jafar

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Checked by:

Semester	Codo	Course	Title of the Course	Hours	Hours Credits	Max.	Internal	External
Semester	Code	Course	The of the course	Hours	Creats	Marks	Marks	Marks
I	20MPCS1CC4	Core – IV	DIGITAL IMAGE PROCESSING	4	4	100	25	75

Students will be able to

- 1. Recognize the fundamental concepts of a digital image processing system.
- 2. Explain the different image enhancement and image restoration techniques
- 3. Apply and review the 2D image transforms
- 4. Analyze the basic algorithms used for image segmentation and image compression with morphologicaltechniques.
- 5. Design and Synthesize Color image processing and its real world applications.

UNITI

Elements of digital image processing systems, Vidicon and Digital Camera working principles, Elements of visual perception, brightness, contrast, hue, saturation, mach band effect, Color image fundamentals – RGB, HSI models, Image sampling, Quantization, dither, Two- dimensional mathematical preliminaries, 2D transforms – **#DFT, DCT, KLT,** SVD#.

UNIT II

Histogram equalization and specification techniques, #Noise distributions#, Spatial averaging, Directional Smoothing, Median, Geometric mean, Harmonic mean, Contra harmonic mean filters, Homomorphic filtering, Color image enhancement.

UNIT III

Image Restoration – degradation model, unconstrained restoration – Lagrange multiplier and constrained restoration, Inverse filtering-removal of blur caused by uniform linear motion, Wiener filtering, Geometric transformations-spatial transformations.

UNIT IV

Edge detection, Edge linking via Hough transforms – # Thresholding # – Region based segmentation – Region growing - Region splitting and Merging - Segmentation by morphological watersheds - basic concepts - Dam construction -Watershed segmentation algorithm.

UNIT V

Need for data compression, Huffman, Run Length Encoding, Shift Course Codes, Arithmetic coding, Vector Quantization, Transform coding, JPEG standard, # MPEG #

...... # Self-study portion

Text Books:

- 1. Rafael C. Gonzalez, Richard E. Woods, Digital Image Processing, Pearson, Second Edition, 2004.
- 2. Anil K. Jain, Fundamentals of Digital Image Processing, Pearson, 2002.

Books for Reference:

- 1. Kenneth R. Castleman, Digital Image Processing, Pearson, 2006
- 2. Rafael C. Gonzalez, Richard E. Woods and Steven Eddins, Digital Image Processing Using MATLAB, Pearson Education Inc., 2004.
- 3. D.E. Dudgeon and RM. Mersereau, Multidimensional Digital Signal Processing, Prentice Hall Professional Technical Reference, 2090
- 4. William K. Pratt, Digital Image Processing, John Wiley, New York, 2002
- 5. Milan Sonka et al., Image Processing, Analysis and Machine Vision, Brookes / Cole, Vikas Publishing House, 2nd Edition, 2099
- 6. Jeyaraman and Esakki Raja, Digital Image Processing, Tata McGraw Hill, 2009

12 hours

12 hours

12 hours

12 hours

Semester	Со	de		Title of th	ne Course		Но	urs	Cre	dits	
I	20MPC	CS1CC4	DIGI	TAL IMAG	E PROCES	SSING	4 4			4	
Course		Programr	ne Outcoi	mes (POs)		Prog	ramme Sp	pecific Ou	tcomes (F	PSOs)	
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1		✓	✓	✓	✓				✓		
CO2	✓	✓	~	✓	✓		~	~	~	✓	
CO3			✓	✓	✓	~	✓		✓	✓	
CO4	✓	✓	✓	✓	✓	~	✓	~	✓	✓	
CO5				✓	~	~	✓ ✓				
	Number of matches (✓) = 37, Relationship: High										

Prepared by:

1. Dr. AR. Mohamed Shanavas

Checked by:

1. Dr. G. Ravi

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC4	Core – IV	NETWORK SECURITY	4	4	100	25	75

Students will be able to

- 1. Recognize the concepts of security architecture, attacks, services and encryption techniques
- 2. Analyze the principle of block cipher and public-key cryptosystems
- 3. Apply key management and hash functions
- 4. Explain various standards for digital signatures
- 5. Analyze and apply security mechanism for real life applications

UNIT I

Introduction: Security Trends – The OSI Security Architecture – Security Attacks – Security Services – Security Mechanisms – A Model for Network Security – Classification Encryption Techniques: Symmetric Cipher Model – Substitution Techniques – Transposition Techniques – **# Steganography #**.

UNIT II

Block Ciphers and the Data Encryption Standard: Block Cipher Principles – The Data Encryption Standard – Advanced Encryption Standard: Evaluation Criteria for AES – The AES Cipher – More on Symmetric Ciphers: Multiple Encryption and Triple DES – **#Stream Ciphers and RC4#** – Public-Key Cryptography and RSA: Principles of Public-Key Cryptosystems – The RSA Algorithm.

UNIT III

Key Management: Key Management – Diffie-Hellman Key Exchange – Elliptic Curve Arithmetic – Elliptic Curve Cryptography – Message Authentication and Hash Functions: Authentication Requirements – Authentication Functions – Message Authentication Course Codes – Hash Functions – Security of Hash Functions and MACs – Hash and MAC Algorithms: Secure Hash Algorithm – HMAC – **#CMAC#**.

UNIT IV

Digital Signatures and Authentication Protocols: Digital Signatures – Authentication Protocols – Digital signature Standard – Authentication Applications: Kerberos – X.509 Authentication Service – Public-Key Infrastructure – **#Firewalls: Firewall Design Principles#** – Trusted Systems.

UNIT V

Electronic Mail Security: Pretty Good Privacy – IP Security: IP Security Overview – IP Security Architecture – Authentication Header – Encapsulating Payload – Combining Security Associations – Key Management – Web Security: Secure Socket Layer and Transport Layer Security – Secure Electronic Transaction.

...... # Self-study portion

Text Book:

- 1. William Stallings, *Cryptography and Network Security Principles and Practices,* Prentice-Hall of India, New Delhi, Fourth Edition, 2007.
- UNIT I: Chapter-1 Section (1.1-1.6) Chapter-2 Section (2.1-2.3, 2.5)
- UNIT II: Chapter-1 Section (3.1, 3.2) Chapter-5 Section (5.1, 5.2) Chapter-6 Section (6.1, 6.3) Chapter-9 Section (9.1, 9.2)
- **UNIT III**: Chapter-10 Section (10.1-10.4) Chapter-11 Section (11.1-11.5) Chapter-12 Section (12.1, 12.3, 12.4)
- UNIT IV: Chapter-13 Section (13.1-13.3) Chapter-14 Section (14.1-14.3) Chapter-20 Section (20.1-20.2)

UNIT V: Chapter-15 Section (15.1) Chapter-16 Section (16.1-16.6) Chapter-17 Section (17.2, 17.3)

Books for Reference:

1. William Stallings, Network Security Essentials: Applications and Standards, Pearson Education, Delhi, 2004.

12 hours

12 hours

12 hours

12 hours

Semester	Со	de		Title of th	ne Course		Но	urs	Cre	dits
I	20MPC	CS1CC4	NETWORK SECURITY				4		4	
Course		Programme Outcomes (POs) Prog			Prog	ramme Sj	pecific Ou	tcomes (F	PSOs)	
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	✓		~	✓	✓	~	~	~	~	~
CO2	✓	✓	✓	✓	✓	✓	✓	~	~	
CO3	✓	✓	~		✓	~	~	~		~
CO4	\checkmark		✓	✓		~		~	~	
CO5	\checkmark	\checkmark	\checkmark	~	\checkmark	~	~	~		~
	Number of matches (✓) = 40, Relationship: High									

Prepared by:

1. Dr. G. Ravi

Checked by:

1. Dr. Dr. D.I George Amalarethinam

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC4	Core – IV	DISTRIBUTED DATABASE SYSTEMS	4	4	100	25	75

Students will be able to

- 1. Recognize the basic principles and implementation of distributed database systems
- 2. Able to carry out research on a relevant topic, identify primary references and analyse them
- 3. Analyse the transaction management and query processing techniques
- Implement alternate models like distributed databases and design applications using advanced models
- 5. Practical applications and evaluation of tools and techniques using DDBMS

UNIT I

Introduction: What is distributed database system – Promises of DDSs – Complicating Factors Problem Areas. Overview of relational DBMS: Concepts – **# Normalization #** – Integrity Rules – Relational database languages.

UNIT II

Distributed DBMS Architecture: Architecture Models for distributed DBMS – #Distributed DBMS Architecture#-Distributed Database design: Alternative Design strategies – Distributed Design issues – Fragmentation

UNIT III

Semantic Data Control: View Management - #Data Security# - semantic Integrity control. Overview of Query Processing: Objectives – characteristics of query processing. Query Decomposition. Optimization of Distributed Queries: Query optimization – Join ordering in Fragment Queries. Distributed Query Optimization Algorithm.

UNIT IV

Introduction Transaction Management: Definition of a transaction Properties – Types. Distributed Concurrency control: Serializability Theory - #Locking based Concurrency control# - Time stamp Based concurrency control -Optimistic concurrency control Deadlock.

UNIT V

Parallel Database System: Database Servers – Parallel Architectures – Paralleled DBMS techniques – Paralleled SBMS technique – DBMS Reliability: Concepts and Measures failures in Distributed DBMS – Local Reliability – #Distributed Reliability Protocols#.

...... # Self-study portion

Text Book:

1. OZSU, M. Tamer and Patrick Valduriez, Principles of Distributed Database Systems, Perntice Hall, 2nd Edition, 2099.

Books for Reference:

1. Stefano Ceri and Gieceseppe, Distributed Database: Principles & Systems, 2088.

12 hours

12 hours

12 hours

12 hours

Semester	Со	de		Title of th	ne Course		Но	urs	Credits	
I	20MPC	CS1CC4	DISTRIBUTED DATABASE SYSTEMS				4		4	
Course		Programr	ne Outcoi	mes (POs)		Programme Specific Outcomes (PSOs)				PSOs)
(COs)	Outcomes (COs) PO1 PO2			PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1			✓		\checkmark	✓	✓	~	✓	
CO2	\checkmark		✓	\checkmark	✓	✓	✓	~		✓
CO3	\checkmark	✓	~	\checkmark	✓	✓	✓	~	✓	
CO4	\checkmark		✓	✓	✓	✓	✓	~	✓	✓
CO5	\checkmark	✓	~	\checkmark	~	~		~	~	✓
	Number of matches (✓) = 41, Relationship: High									

Prepared by:

Checked by:

1. Dr. G. Ravi

1. Dr. D.I George Amalarethinam

Note:

[Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
	Matches	1-14	15-29	30-34	35-44	45-50
	Relationship	Very poor	Poor	Moderate	High	Very high

Somostor	Codo	Course	Title of the Course	of the Course Hours	Hours Credits		Internal	External
Semester	Code	Course	The of the course	HOUIS	Creats	Marks	Marks	Marks
I	20MPCS1CC4	Core – IV	NETWORK MANAGEMENT	4	4	100	25	75

Students will be able to

- 1. Identify the insights of Data communication and Network management and classify the computer network technologies.
- 2. Define the foundations of Network management standards and its models.
- 3. Practice SNMP management such as structure, architecture, compatibility, applications and remote monitoring.
- 4. Examine Broadband access networks and its technologies.
- 5. Apply the Network management tools and systems and list the management applications.

UNIT I

12 hours

12 hours

12 hours

Data Communication and Network Management Overview: Analogy of Telephone Network Management – Data and Telecommunication Network- Distributed Computing Environments – TCP/IP- Based Networks – Communication Protocols and Standards – Case Histories – Challenges of Information Technology Managers- Network Management: Goals, Organization and Functions – **#Network and System Management#** – Network Management System Platform – Current Status and Future of Network Management – Fundamental of Computer Network Technology: Network Topology, LAN, Network Node components – **#WAN#** – Transmission Technology- Integrated Services: ISDN, Frame Relay, and Broadband.

UNIT II

SNMP, Broadband and TMN Management – Basic Foundations: Network Management Standards, Network Management Model – Organization Model – Information Model – Communication model – Encoding Structure – Macros – Functional Model – SNMPv1 Network Management: Organization and Information Models – Management Network – The History of SNMP Management – Internet Organizations and Standards – The SNMP Model – **#The Organization Model#** – System Overview – The Information Model – SNMPv1 Network Management: Communication Model and Functional Models.

UNIT III

SNMP Management: Major Changes in SNMPv2 – SNMPv2 System – Architecture – SNMPv2 Structure of Management Information – The SNMPv2 Management Information Base – SNMPv2 Protocol – Compatibility with SNMPv1 – SNMPv3 – SNMPv3 Documentation – SNMPv3 Documentation Architecture- Architecture – SNMPv3 Applications – SNMPv3 Management Information Base – Security – SNMPv3 User – Based Security Model – Access Control- SNMP Management: RMON – Remote Monitoring – RMON SMI and MIBRMON1 – RMON2 – ATM Remote Monitoring –**#** Case Study#.

UNIT IV

Broadband Networks and services – ATM Technology – ATM Network Management- Broadband Access networks and Technologies – **#HFC Technology#** – Data over Cable Reference Architecture – HFC Management – DSL Technologies – ADSL technology – ADSL Management.

UNIT V

12 hours

12 hours

Network Management Tools and Systems: System Utilities for Management- Network Statistics Measurement Systems- MIB Engineering – NMS Design – Network Management Systems – Network Management Applications: Configuration Management – Fault Management – Performance Management – Event correlation Techniques – Security Management – **#Accounting Management#** – Report Management – Policy Based Management.

...... # Self-study portion

Text Book:

1. Mani Subramanian, Network Management: Principles and Practice, Pearson Education, 2010

Books for Reference:

1. William Stallings, SNMP, SNMPv2, SNMPv3, and RMON 1 and 2, Addison-Wesley, 2099

Semester	Co	de		Title of th	ne Course	!	Hours		Credits	
I	20MP0	CS1CC4	NETWORK MANAGEMENT			4		4		
Course		Programr	ne Outcoi	mes (POs)		Prog	ramme Sj	pecific Ou	tcomes (F	PSOs)
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	✓	✓	✓	\checkmark		✓	~		✓	~
CO2	\checkmark	~		\checkmark	\checkmark	~	~		~	~
CO3	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	~	~	~	~	~
CO4	\checkmark	✓	\checkmark	\checkmark	\checkmark	✓	✓		✓	~
CO5	\checkmark	✓	\checkmark	\checkmark	✓	✓	✓	✓	✓	~
	Number of matches (\checkmark) = 45, Relationship: High									

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Prepared by:

1. Dr. M. Mohamed Surputheen

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Checked by:

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC4	Core – IV	CLOUD COMPUTING	4	4	100	25	75

Students will be able to

- 1. Recognize the knowledge on concepts of cloud computing
- 2. Acquire and apply the knowledge of virtual machines
- 3. To learn public, private and hybrid cloud deployment models
- 4. To acquire knowledge about SLA management
- 5. Understand the application access of cloud

UNIT I

Introduction to Cloud Computing: Roots of Cloud Computing – Layers and Types of Cloud – Features of a Cloud – Infrastructure Management – Cloud Services – Challenges and Risks. Migrating into a Cloud: Introduction – Broad Approaches – **#Seven Steps Model#**. Integration as Service-Integration Methodologies – SaaS

UNIT II

Infrastructure as a Service: Virtual Machines – Layered Architecture-Life Cycle – VM Provisioning Process – Provisioning and Migration Services. Management of Virtual Machines Infrastructure – Scheduling Techniques-Cluster as a service – **#RVWS Design#** – Logical Design. Cloud Storage – Data Security in cloud Storage – Technologies.

UNIT III

Platform and Software as a Service: Integration of Public and Private Cloud – Techniques and tools – framework architecture – resource provisioning services – Hybrid Cloud. Cloud based solutions for business Applications – Dynamic ICT services – Importance of quality and Security in clouds – Dynamic Data center – case studies. Workflow Engine in the cloud – Architecture – Utilization. Scientific Applications for Cloud – Issues – Classification – SAGA – **#** Map Reduce Implementation#.

UNIT IV

Monitoring and Management: An Architecture for federated Cloud Computing – Usecase –Principles – Model – Security Considerations. SLA Management – Traditional Approaches to SLO – Types of SLA – Lifecycle of SLA – Automated Policy. Performance Prediction of HPC – **# Grid and Cloud #** – HPC Performance related issues.

UNIT V

Applications: Best Practices in Architecting cloud applications in the AWS cloud – Massively multiplayer online Game hosting on cloud Resources – **#Building content delivery Networks using clouds#** – Resource cloud Mashups.

...... # Self-study portion

Text Book:

1. RajkumarBuyya, James Broberg, and Andrzej Goscinski, *Cloud Computing Principles and Paradigms*, John Wiley and Sons, Inc, 2011.

 UNIT I
 Chapter 1: Section 1.2 – 1.8
 Chapter 2: Section 2.1 – 2.3
 Chapter 3: Section 3.1, 3.7, 3.9, 3.8

 UNIT II
 Chapter 5: Section 5.4,5.5,6.2,6.3
 Chapter 6: Section 6.2,6.3
 Chapter 7: Section 7.3,7.4

 Chapter 8: Section 8.2, 8.3
 Chapter 4: Section 8.2, 8.3
 Chapter 4: Section 4: Section

UNIT III Chapter 9: Section 9.1, 9.2
Chapter 12: Section 12.5Chapter 10: Section 10.4
Chapter 13: Section 13.1-13.3Chapter 11: Section 11.5, 11.4
Chapter 13: Section 13.1-13.3

UNIT IV Chapter 15: Section 15.1-15.5 Chapter 16: Section 16.2-16.3, 16.6 **UNIT V** Chapter 18: Section 18.1-18.6 Chapter 20: Section 20.1-20.6

Chapter 17: Section 17.1, 17.3, 17.4 Chapter 21: Section 21.1-21.3

Books for Reference:

1. George Reese, Cloud Application Architectures, O'Reilly Media, Inc, First Edition, 2009.

2. Michael Miller, *Cloud Computing: Web based Applications That Change the Way You Work and Collaborate Online*, QUE Publishing, 2009.

12 hours

12 hours

12 hours

12 hours

Semester	Со	de		Title of th	ne Course		Но	urs	Cre	dits
I	20MPC	CS1CC4	CLOUD COMPUTING					4	4	
Course		Programn	ne Outcoi	Outcomes (POs) Programme					tcomes (F	PSOs)
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	~			\checkmark	✓	✓	✓		✓	~
CO2	~	✓		✓	✓	✓	~	~	~	
CO3	✓		\checkmark	✓	\checkmark	~	~		✓	~
CO4	✓	\checkmark		\checkmark	\checkmark	~	~	\checkmark	✓	✓
CO5	✓		\checkmark	\checkmark	\checkmark	✓	✓	✓	✓	✓
	Number of matches (\checkmark) = 41, R							•	•	•

Prepared by:

1. Dr. D.I George Amalarethinam

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Checked by:

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC4	Core – IV	MOBILE COMPUTING	4	4	100	25	75

Students will be able to

- 1. Acquire Knowledge on various communication technology
- 2. Explain the GSM, GPRS, and Bluetooth software model for mobile computing
- 3. Recognize the Knowledge of 3G wireless standards
- 4. Analyze security issues of mobile computing systems
- 5. Apply data communicating methods and networking protocols for mobile environment

UNIT I

Introduction – Mobile Computing Architecture – Internet – The Ubiquitous Network – Three – Tier Architecture – Design Considerations – Mobile Computing through Internet – Making Existing Applications Mobile Enabled – Mobile Computing through Telephony – #Multiple Access Procedures# – Developing an IVR Application – Voice XML – TAPI.

UNIT II

Emerging Technologies – Bluetooth – Radio Frequency Identification (RFID) – Wireless Broadband (WiMAX) – Mobile IP – Internet Protocol Version 6 – Java Card – Global System for Mobile Communications (GSM) – GSM Architecture – Entities – Call Routing in GSM – PLNM Interfaces – GSM Address and Identifiers – Network Aspects – #Frequency Allocation# – Authentication and Security – Short Message Service (SMS) – Mobile Computing over SMS – Value Added Services through SMS – Accessing the SMS Bearer.

UNIT III

General Pocket Radio Service (GPRS) – GPRS and Packet Data Network – GPRS Network Architecture – Operations – Data Services – Applications – Limitations – Wireless Application Protocol (WAP) – MMS – GPRS Applications – CDMA and 3G – Spread-Spectrum Technology – IS-95 – CDMA versus GSM – Wireless Data – **#3G Networks#** – Applications.

UNIT IV

Wireless LAN – Advantages – IEEE 802.11 Standards – Wireless LAN Architecture – Mobility – Deploying Wireless LAN – Mobile Ad Hoc Networks and Sensor Networks – Wireless LAN Security – WiFi versus 3G – Internet Networks and Interworking – Call Processing – Intelligence in Networks – SS#7 Signaling – IN Conceptual Model (INCM) – Softswitch – Programmable Networks – Technologies and Interfaces for IN – Client Programming – Mobile Phones – PDA –#Design Constraints#.

UNIT V

Palm OS – Architecture – Application Development – Communication in Palm OS – Multimedia – Voice over Internet Protocol and Convergence – H.323 Framework – Session Initiation Protocol (SIP) – Real Time Protocols – Convergence Technologies – Call Routing – Voice over IP Applications – IP Multimedia Subsystem – Mobile VoIP – Security Issues in Mobile Computing – Information Security – Security Techniques and Algorithms – Security Protocols – **#Public Key** Infrastructure# – Security Models – Security Frameworks for Mobile Environment.

...... # Self-study portion

Text Book:

1. Asoke K Talukder, Roopa R Yavagal, Mobile Computing – Technology, Applications and Service Creation, Tata McGraw-Hill Publishing Company Ltd., Eleventh Reprint, 2009.

Books for Reference:

- 1. Tomasz Imielinski, Henry F. Korth, Mobile Computing, Kluwer Academic Publishers, 2006
- 2. Raj Kamal, Mobile Computing, Oxford University Press, 2008.
- 3. Uwe Hansmann, LotharMerk, Martin S. Nicklous, Thomas Stober, Principles of Mobile *Computing*, Springer International Edition, 2008
- 4. GargKumkum, Mobile Computing: Theory and Practice, Pearson Education India, 2010.

12 hours

12 hours

12 hours

12 hours

Semester	Co	de	Title of the Course			Hours		Credits		
I	20MP0	CS1CC4	N	OBILE CO	OMPUTIN	G		4	4	
Course		Programn	ne Outcoi	mes (POs)		Prog	ramme Sj	pecific Ou	tcomes (F	PSOs)
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	\checkmark		\checkmark	✓	✓	✓	~	~	~	~
CO2	\checkmark		\checkmark		\checkmark	✓		~	~	
CO3	\checkmark			\checkmark	\checkmark	✓	✓	~	~	~
CO4	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	\checkmark	~	~	~
CO5	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	✓	✓	✓	✓	~
		Nu	umber of	matches (✓) = 43,	Relations	hip: High			

Prepared by:

1. Dr. G. Ravi

Note:

30-59% 60-69% 70-89% 90-100% 1-29% Mapping 35-44 Matches 15-29 30-34 45-50 1-14 Relationship Very poor Poor Moderate High Very high

Checked by:

1. Dr. D.I George Amalarethinam

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC4	Core – IV	BIG DATA ANALYTICS	4	4	100	25	75

Students will be able to

- 1. Recognize the characteristics of Big data, concepts of Analytics and its types.
- 2. State the History of Hadoop and Spark, Infer the Hadoop Core (HDFS) & its Eco-systems.
- 3. Apply the Map Reduce (MR) patterns and prepare the MR programming Model
- 4. Practice different kinds of Data models; show the Data Visualization frameworks via examples.
- 5. Experiment classification, clustering and regression-based algorithms via Spark Mllib framework.

UNIT I

12 Hours

12 Hours

Big Data – Characteristics of big Data – Domain specific examples of big data – Analytics flow for big data – Big data stack – Analytics – Analytics Types – Big data storage – **#Mapping analytics flow of big data stack#**.

UNIT II

Brief history of Hadoop - Hadoop core: Hadoop Distributed File System (HDFS) & Map Reduce (MR) & Hadoop Ecosystems: Hbase - Hive & R, Impala - Pig and Pig Latin – Sqoop – ZooKeeper – Avro - HDFS: Design of HDFS – concepts – **# Hadoop file system#**.

Introducing Apache Hadoop: HDFS features - MR - MR features – Storage options on Hadoop – File formats and Compression formats – Introducing Apache Spark: History – What is Apache Spark? – MR issues – Spark's stack. Hadoop plus Spark: Hadoop features – Spark features – **#Installing Hadoop plus Spark clusters#**.

UNIT III

Map Reduce Patterns: Numerial summarization (count, max-min) – Top-N – Filter – Binning – Sorting – Joins. Hadoop and MR: MR programming model – Hadoop YARN – **#Hadoop MR Example: Find top N-words with map reduce#**.

UNIT IV

Data Management (Data Models): Key Value Pair Data Bases (DB) - Document Store DBs – Column Store DBs – Graph Based DBs – Comparison of NOSQL databases.

Data Visualization: Frameworks & Libraries: Lightning – Pygal – Seaborn – Visualization examples: Line chart - Scattor plot – Bar chart – Map chart – KDE plot – Pair grid.

UNIT - V:

Frameworks: Spark MLlib – H2O – Clustering: k-means – Classification & Regression: Naïve Bayes (NB) – Decision Tree (DT) – **#Random Forest (RF) – Support Vector Machines (SVM)#.**

#.....# Self-study portion

Text Books:

- 1. ArshdeepBahga& Vijay Madisetti, *"Big Data Analytics: A Hands-on Approach"*, 2020, ISBN: 978-1-949978-00-1, Book Website: www.hands-on-books-series.com (For Unit - I, III, IV & V)
- 2. Tom White "*Hadoop: The Definitive Guide*", Second Edition, *O'reilly Media*, 2011, ISBN: 978-1-449-38973-4. (For Unit–II)
- 3. VenkatAnkem, "Big Data Analytics", Packt Publishing, 2016, ISBN 978-1-78588-469-6 (For Unit–II).

12 Hours

12 Hours

12 Hours

Books for Reference:

- 1. Judith Hurwitz, Alan Nugent, Dr. Fern Halper, and Marcia Kaufman , "*Bigdata for Dummies*", John Wiley & Sons Inc, 2013. ISBN 978-1-118-64396-9 (ebk). www.it-ebooks.info.
- Lakshmi Prasad Y, "Big Data Analytics Made Easy", Notion Press, 1stEdition, 2016, ISBN 978-1-946390-72.
- **3.** Chris Eaton, Dirk DeRoos, Tom Deutsch, George Lapis, Paul Zikopoulos, "Understanding Big Data: Analytics for Enterprise Class Hadoop and Streaming Data", McGrawHill Publishing, 2012.
- **4.** Zaharia M et al., *Apache Spark:* A Unified Engine for Big Data Processing, *Communications of ACM*, Vol.59, No.11 pp. 56 -65 DOI:10.1145/2934664.
- 5. Shasank Tiwari, "Professional NOSQL", 2011, John Wiley & Sons, Inc.,
- **6.** Bill Franks, "Taming the Big data tidal wave: Finding Opportunities in Huge Data Streams with Advanced Analytics", JohnWiley& Sons Inc., 2012.
- 7. Seema Acharya, SubhasiniChellappan, "Big Data and Analytics", O'Reilly Media, 2013 Edition.
- **8.** Boris lublinsky, Kevin T. Smith, Alexey Yakubovich, "Professional Hadoop Solutions", Wiley, 2015, ISBN: 978-8126551071.

Web References

- 1. https://www.guru99.com/bigdata-tutorial.html
- 2. http://www.javapoint.com/what-is-big-data

Semester	Со	de	Title of the Course			1	Hours		Cre	Credits	
I	20MPC	CS1CC4	В	IG DATA	ANALYTIC	CS		1	4		
Course		Program	ne Outco	mes (POs)		Prog	ramme Sp	pecific Ou	tcomes (F	PSOs)	
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	✓		✓	✓	~	✓	~	~	~	~	
CO2	\checkmark		✓	~	~	~	~	✓	~	~	
CO3	\checkmark	\checkmark	~		~	~	~	✓	~	~	
CO4	\checkmark		~		~	✓	~	✓	~		
CO5	\checkmark			✓		✓	✓	✓		✓	
		N	umber of	matches (✓) = 40,	Relations	hip: High	•	•	•	

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Prepared by:

1. Dr. D.I George Amalarethinam

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Checked by:

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20MPCS1CC4	Core – IV	INTERNET OF THINGS	4	4	100	25	75

Students will be able to

- 1. Able to understand vision of Internet of Thing and its characteristics
- 2. To learn IoT related future Internet technologies
- 3. To learn different protocols used in IoT
- 4. To learn Federated cloud service management in IoT
- 5. Able to understand the application areas of IoT

UNIT I

Introduction - Putting the Internet of Things forward to the Next Level - Internet of Things Strategic Research and Innovation Agenda: Internet of Things Vision - Internet of Things Strategic Research and Innovation Directions - IoT Smart X Applications.

UNIT II

Internet of Things and Related Future Internet Technologies - Network and Communications - Processes - Data Management - Security, Privacy and Trust - Device Level Energy Issues - IoT Related Standardization - IoT Protocols Convergence.

UNIT III

Scalable Integration Framework for Heterogeneous Smart Objects, Applications and Services : IPV6 Potential - IoT6 - IPV6 vs.IoT - Adapting IPV6 to IoT Requirements - IoT6 Architecture - Discovery - IoT6 Integration with the Cloud and EPICS - Enabling Heterogeneous Integration - IoT6 Smart Office Use Case - Scalability Perceptive.

UNIT IV

Insights on Federated Cloud Service Management and the IoT: Federated Cloud Service Management - Federated Management Service Life Cycle - Self Management Life Cycle - Self Organising Cloud Architecture - Horizontal Platform.

UNIT V

Internet of Things Applications: OpenIoT - iCORE - Compose - SmartSantander - Fitman - OSMOSE.

...... # Self-study portion

Books for Reference:

- 1. OvidiuVermesan, Peter Friess, "Internet of Things From Research Innovation to Market Deployment", River Publishers, 2014
- 2. Adrian McEwen, HakimCassimally, "Designing the Internet of Things, John Wiley and Sons Ltd, 2014

12 Hours

12 Hours

12 Hours

12 Hours

12 Hours

Semester	Co	de		Title of tl	ne Course	2	Hours		Cre	dits
I	20MPC	CS1CC4	11	NTERNET	OF THING	6S		4	4	
Course		Programn	ne Outco	mes (POs))	Prog	ramme Sj	pecific Ou	tcomes (F	PSOs)
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	✓		✓	~		✓	~	~	✓	~
CO2	✓	~	~	~	~		~	~	✓	~
CO3	\checkmark	✓	~	~	✓	✓	~		~	✓
CO4			\checkmark		✓	✓	~		✓	✓
CO5	\checkmark	\checkmark	✓	✓		✓		✓	✓	✓
		Nu	umber of	matches (✓) = 40,	Relations	hip: High			

Prepared by:

1. Dr. D.I. George Amalarethinam

Note:

Mapping	1-29%	30-59%	60-69%	70-89%	90-100%
Matches	1-14	15-29	30-34	35-44	45-50
Relationship	Very poor	Poor	Moderate	High	Very high

Checked by: