
1 
 

 



2 
 

S.No. Name of the Practical Page No. 

 R PROGRAMMING                                                 44-17 

 Introduction to R Programming 5 

1.  Develop a programme in R to create vectors. 11 

2.  Develop a programme in R to create matrices. 11 

3.  Develop a programme in R using control statements. 12 

4.  Develop a programme in R to import spread sheet data. 12 

5.  Develop a programme in R to calculate mean and median. 13 

6.  Develop a programme in R to calculate standard deviation. 13 

7.  
Develop a programme in R to present the data in tabulation and 

graphical representation. 
14 

8.  Develop a programme in R using chi-square test. 15 

9.  Develop a programme in R using student’s t test. 16 

10.  Develop a programme in R to calculate one way ANOVA. 17 

   

 MATHEMATICA 18-27 

 Introduction of Mathematica 19 

1.  Solving higher degree equations. 23 

2.  Solving system of equations by matrix method and find the eigen 

values and eigen vectors of a matrix of order 4 by 4 or higher order. 

23 

3.  Solving system of non-linear equations. 24 

4.  Finding the differentiation of different functions of second and third 

derivatives. 

24 

5.  Finding the Integration of different functions with limits. 25 

6.  Evaluation of double integrals and triple integrals. 25 

7.  Solving ordinary differential equations with initial condition. 26 

8.  Solving system of ordinary differential equations. 26 

9.  Creating and plotting 2-D and 3-D graphs. 27 



3 
 

10.  Solving Linear programming problems. 27 

 MAPLE 28-44 

 Introduction to Maple 29 

1.  Simple programs using Mathematical constants 40 

2.  Programs using complex functions 40 

3.  Numerical solutions of nonlinear equations and systems 41 

4.  Solving system of linear equations using Jacobi method 41 

5.  Program using Trigonometric and Hyperbolic Expressions 42 

6.  Finding Eigen values and Eigen vectors of a matrix 42 

7.  Plotting Points in the Plane and Space 43 

8.  Analyse data using Central Tendency and Measures of dispersion 

and distributions 

43 

9.  Find the Laplace integral transforms for different functions 44 

10.  Solving the differential equations 44 

 

 

 

 

 

 

 

 



4 
 

 

 

 

 

 

R PROGRAMMING 

 

 

 

 

 

 

 

  



5 
 

Introduction to R Programming 
i  History 

 R is an extension of the S-programming language, which was created by John 

Chambers at Bell Laboratories (formerly AT&T, now Lucent Technologies) in 1976. S was a 

premiere tool for statistical research, but it wasn’t very feasible outside scholarly research.  

 In 1992, Ross Ihaka and Robert Gentleman created R at the University of Auckland, 

New Zealand, as a tool that their students could learn and use easily. Ihaka and Gentleman 

released the initial version in 1995, and a stable beta version was released in 2000. Since then, 

it is maintained by the R Development Core Team. 

 

ii Background  

 R is a programming language and software environment for statistical computing and 

graphics supported by the R Foundation for Statistical Computing. R is an integrated suite of 

software facilities for data manipulation, calculation and graphical display. It includes 

1. an effective data handling and storage facility, 

2. a suite of operators for calculations on arrays, in particular matrices, 

3. a large, coherent, integrated collection of intermediate tools for data analysis, 

4. graphical facilities for data analysis and display either on-screen or on hard copy, and 

5. a well-developed, simple and effective programming language which includes 

conditionals, loops, user-defined recursive functions and input and output facilities. 

 The term “environment” is intended to characterize it as a fully planned and coherent 

system, rather than an incremental accumulation of very specific and inflexible tools, as is 

frequently the case with other data analysis software. Many users think of R as a statistics 

system. It is preferable to think of it of an environment within which statistical techniques are 

implemented. R can be extended (easily) via packages. There are several packages supplied 

with the R distribution and many more are available through the CRAN family of Internet sites 

covering a very wide range of modern statistics. 

 The R language is widely used among statisticians and data miners for developing 

statistical software and data analysis.  R is an implementation of the S programming language. 

R was created by Ross Ihaka and Robert Gentleman at the University of Auckland, New 

Zealand, and is currently developed by the R Development Core Team, of which Chambers is 

a member. R is named partly after the first names of the first two R authors and partly as a play 



6 
 

on the name of S. R is a GNU project. The source code for the R software environment is 

written primarily in C, Fortran, and R. R is freely available under the GNU General Public 

License, and pre-compiled binary versions are provided for various operating systems. 

 R-Studio is an integrated development environment (IDE) for R. It includes a console, 

syntax-highlighting editor that supports direct code execution, as well as tools for plotting, 

history, debugging and workspace management. RStudio is available in open source and 

commercial editions and runs on the desktop (Windows, Mac, and Linux) or in a browser 

connected to RStudio Server or RStudio Server Pro (Debian/Ubuntu, RedHat/CentOS, and 

SUSE Linux). RStudio is a free and open-source integrated development environment (IDE) 

for R, a programming language for statistical computing and graphics. JJ Allaire, creator of the 

programming language ColdFusion, founded RStudio. Hadley Wickham is the Chief Scientist 

at RStudio. RStudio is available in two editions: RStudio Desktop, where the program is run 

locally as a regular desktop application; and RStudio Server, which allows accessing RStudio 

using a web browser while it is running on a remote Linux server. Pre-packaged distributions 

of RStudio Desktop are available for Windows, OS X, and Linux. 

RStudio is written in the C++ programming language and uses the Qt framework for its 

graphical user interface. Work on RStudio started at around December 2010, and the first 

public beta version (v0.92) was officially announced in February 2011. 

iii Features of R Programming 

 R has a massive community that works tirelessly to improve and add upon R’s 

abilities. CRAN or Comprehensive R Archive Network has over 10,000 packages or 

extensions that can be used from producing high-definition graphics to creating interactive 

web-apps. 

 R can perform complex mathematical and statistical operations on vectors, matrices, data 

frames, arrays, and other data objects of varying sizes. 

 R is an interpreted language and does not need a compiler. It generates a machine-

independent code that is easy to debug and is highly portable. 

 R is a comprehensive programming language that supports object-oriented as well as 

procedural programming with generic and first-class functions. 

 It supports matrix arithmetic. 

 R can present data graphically. With static graphics, producing production quality 

visualizations and extended libraries providing interactive graphic capabilities, data 

visualization, and data representation becomes very easy. From concise charts to elaborate 

flow diagrams, all are well within R’s repertoire. 



7 
 

 R can be used throughout the data analysis process. It helps to gather the data, to clean it, 

to investigate it, to model it, and finally, it helps you to compile the results in an eye-

catching and easy to understand reports with R markdown. R can also help you build 

apps to show the results to the world. 

 It can use distributed computing to process large datasets parallelly. 

 R has packages that allow it to interact with multiple databases of different formats. It can 

also interact with various database management systems. 

 R is compatible with many other programming languages like C, C++, Java, Python, etc. 

 

iv Basic principles of R programming 

R Data Types 

There are fundamentally five data types in R. 

1. Numeric data types : Numeric data consists of decimal values 

2. Integer data type:  

In R, there are two ways to create an integer variable.  

 The first is to invoke the as.integer() function. 

 The second is to creating an integer variable is to use ‘the capital L’. 

  

3. Complex data type: 

 The complex data type in R is for complex numbers or numbers with imaginary values. 

4. Character data type: 

 The character data type is used to store strings in R. A character variable can be created 

in two ways in R. 

 The first is to invoke the as.character() function. 

 create a character variable is by using inverted commas. 

5. Logical data type : 

A logical variable can have two values either TRUE or FALSE. Logical are generally 

created when there is a comparison between variables. 

  



8 
 

v Simple calculations 

 Since the R environment can serve as an advanced calculator, it is worth noting this 

also allows for simple calculations. In the table below we show a few examples of such 

calculations where the first column gives a mathematical expression (calculation), the second 

gives the equivalent of this expression in R and finally in the third column we can find the 

result that is output from R. 

Math. R Result 

2+2 2+2 4 

4/2 4/2 2 

3⋅2−0.8 3*2^(-0.8) 1.723048 

√22 sqrt(2) 1.414214 

Ππ Pi 3.141593 

ln(2) log(2) 0.6931472 

log3(9) log(9, base = 3) 2 

e1.1 exp(1.1) 3.004166 

cos(√0.9) cos(sqrt(0.9)) 0.5827536 

 

vi Numerical Input 

 A first step in analysing numerical inputs is given by computing summary statistics of 

the data which, in this section, we can generally denote as x . For central tendency or spread 

statistics of a numerical input, we can use the following R built-in functions: 

 mean calculates the mean of an input x; 

 median calculates the median of an input x; 

 var calculates the variance of an input x; 

 sd calculates the standard deviation of an input x; 

 IQR calculates the interquartile range of an input x; 

 min calculates the minimum value of an input x; 

 max calculates the maximum value of an input x; 

 range returns a vector containing the minimum and maximum of all given arguments; 

 summary returns a vector containing a mixture of the above functions (i.e. mean, 

median, first and third quartile, minimum, maximum). 

 



9 
 

vii Factor Input 

 If the data of interest is a factor with different categories or levels, then different 

summaries are more appropriate. For example, for a factor input we can extract counts and 

percentages to summarize the variable by using table. Using functions and data structures that 

will be described in the following chapters, below we create an example dataset with 90 

observations of three different colors: 20 being Yellow, 10 being Green and 50 being Blue. We 

then apply the table function to it: 

table(as.factor(c(rep("Yellow", 20), rep("Green", 10), rep("Blue", 50)))) 

##  

##   Blue  Green Yellow  

##     50     10     20 

By doing so we obtain a frequency (count) table of the colors. 

viii Lists 

 Lists can be extremely convenient to make text more readable or to take course notes 

during class. R Markdown allows to create different list structures as shown in the code below: 

* You can create bullet points by using symbols such as *, +, or -.  

+ simply add an indent or four preceding spaces to indent a list.  

    + You can manipulate the number of spaces or indents to your liking.  

        - Like this.  

    * Here we go back to the first indent.  

1. To make the list ordered, use numbers.  

1. We can use one again to continue our ordered list.  

2. Or we can add the next consecutive number.  

which delivers the following list structure: 

 create bullet points by using symbols such as *, +, or -. 

 simply add an indent or four preceding spaces to indent a list. 

 manipulate the number of spaces or indents to your liking. 

 Like this. 

Here we go back to the first indent. 

1. To make the list ordered, use numbers. 

2. We can use one again to continue our ordered list. 



10 
 

3. Or we can add the next consecutive number. 

ix The most common “core” packages 

 readr, for data import. 

 ggplot2, for data visualization. 

 dplyr, for data manipulation. 

 tidyr, for data tidying. 

 purrr, for functional programming. 

 tibble, for tibbles, a modern re-imagining of dataframes. 

 stringr, for string manipulation. 

 forcats, for working with factors (categorical data). 

To install packages in R we use the built-in install.packages() function. 

 

  



11 
 

Practical 1 : Develop a programme in R to create vectors 

 

Aim:  Create a vectors as follows: 

 1.  creating a vectors from 5 to 13. 

 2. creating a vectors from 6.6 to 12.6.  Using R Programme 

 

Procedure:  

Step 1: Write the R Programming code for the given vectors in R desktop. 

Step 2: Run the Program. 

Step 3: If any error occurs in your code then clear the errors and again run. 

Step 4: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

Practical 2 : Develop a programme in R to create matrices 

 

Aim: Create matrices.  

1.    3      4       5 

      6      7       8 

      9     10     11 

      12   13     14 

2.     9     18   12 

       11   10    4    Using R program 

(You can create any order of matrices) 

Procedure:  

Step 1: Check the matrix of dimension. 

Step 2: Write the R program codes to create given vectors in R desktop. 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

 



12 
 

Practical  3 : Develop a programme in R using control statements 

 

Aim: Check value is less than or greater than 10 and Checks value is either positive, 

negative or zero 

1, 23, 45, -2, 0, -12, 11, -22, -10, 13, 7, 8, 3, 2, 9 

(You can solve any large data set uploading format like excel sheet.) 

Procedure:  

Step 1: Verify the date is numerical values. 

Step 2: Write the R programming codes to verify data is less than or greater than 10 and either 

positive, negative or zero in R desktop. 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

Practical 4 : Develop a programme in R to import spread sheet data 

 

Aim:   R Programme to import spread sheet data into R. 

 

Procedure:  

Step 1: Install the readxl package. 

Step 2: Prepare your Excel File 

Step 3: Import the Excel file into R. 

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 

 

 

  



13 
 

Practical 5 : Develop a programme in R to calculate mean and median 

 

Aim:  Calculate mean and median −21, −5, 2, 3, 4.2, 7, 8, 12, 18, 54 using R Programme. 

 

(You can solve any large data set uploading format like excel sheet.) 

 

Procedure:  

Step 1: create the given vector. 

Step 2: Write the R program codes to find the value of mean and median 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

 

Practical 6 : Develop a programme in R to calculate standard deviation 

 

Aim:  For the frequency distribution: 

x 2 3 4 5 6 7 

f 4 9 16 14 11 6 

Find the standard deviation using R program.  

 

(You can solve any large data set uploading format like ex-sheet.) 

Procedure:  

Step 1: If possible you can simplify the vectors. 

Step 2: Write the R programming codes to find the value of the standard deviation 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 

 

  



14 
 

Practical 7 :  Develop a programme in R to present the data in tabulation 

and graphical representation 

 

Aim: Develop a test of 50 marks is administered on a class of 40 students and the marks 

obtained by these students are as listed below 

   

35, 40, 22, 32, 41, 18, 40, 36, 29, 24, 28,31, 11, 39, 

12, 46, 28, 30, 31, 42, 15, 19, 24, 39, 49, 38, 23, 46, 

11, 32, 33, 44, 22, 21, 34, 23, 16, 37, 32, 40, 

 

Create a R Programme to present the data in tabulation and graphical representation. 

 

(You can solve any large data set uploading format like excelsheet.) 

 

Procedure:  

Step 1: verify the given data is numerical data. 

Step 2: Write the R progamming codes to formatting tabulation and graphical 

representation(like pie chart, Histogram, line graph, scatterplots). 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 



15 
 

Practical 8 : Develop a programme in R using chi-square test 

 

Aim: Chi-square test. 

 Is gender independent of education level? A random sample of 395 people were 

surveyed and each person was asked to report the highest education level they obtained. 

The data that resulted from the survey is summarized in the following table: 

 High School Bachelors Masters Ph.d. Total 

Female 60 54 46 41 201 

Male 40 44 53 57 194 

Total 100 98 99 98 395 

 

(You can solve any large data set uploading format like excel sheet.) 

Procedure:  

Step 1: verify the given data is suitable for chi-square test. 

Step 2: Write the R program codes to solve the given Data. 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

  



16 
 

Practical 9 : Develop a programme in R using student’s t test 

 

Aim:  Develop a programme in R. 

Calculate a paired t test by hand for the following data: 

 

Subject Score 1 Score 2 

1 30 20 

2 3 13 

3 20 13 

4 12 20 

5 15 29 

6 17 23 

 

(You can solve any large data set uploading format like excel sheet.) 

 

Procedure:  

Step 1: verify the given data is student’s t test. 

Step 2: Write the R program codes to plot the given set of graphs in one set of axes. 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

  



17 
 

Practical 10 : Develop a programme in R to calculate one way ANOVA 

 

Aim:  

 An education researcher is comparing four different algebra curricula. Eighth 

grade students are randomly assigned to one of the four groups. Their state achievement 

test scores are compared at the end of the year. Use the appropriate statistical procedure 

to determine whether the curricula differ with respect to math achievement. An alpha 

criterion of .05 should be used for the test. 

 N Mean SD 

Curriculum 1 50 170.5 14.5 

Curriculum 2 50 168.3 12.8 

Curriculum 3 50 167.6 17.7 

Curriculum 4 50 172.8 16.8 

 

(You can solve any large data set uploading format like excel sheet.) 

Procedure:  

Step 1: Verify the average within-group variance; it is not sensitive to group mean 

differences. 

Step 2: Verify estimating the variance is sensitive to group mean differences. 

Step 3: Write the R programming code for the given equation in R desktop. 

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 



18 
 

 

 

 

 

 

 

 

 

 

MATHEMATICA 

 

 

 

 

 
 
 
 
 
 
 
 

  



19 
 

Introduction to Mathematica 
i. History  

  In 1979–1981, Stephen Wolfram constructed SMP (Symbolic Manipulation 

Program), the first modern computer algebra system (SMP was essentially Version Zero of 

Mathematica).   In 1986–1988, Stephen Wolfram developed the first version of 

Mathematica. The concept of Mathematica was a single system that could handle many 

specific problems (e.g., symbolic, numerical, algebraic, graphical).  In 1987, Wolfram 

founded a company, Wolfram Research, which continues to extend Mathematica.  In 1991, 

the second version of Mathematica appears with more built-in functions, MathLink 

protocol for interprocess and network communication, sound support, notebook front end.  

In 1996, the third version introduced interactive mathematical typeset- ting system, 

exporting HTML, hyperlinks, and many other functions. In 1999, the fourth version of 

Mathematica appears with important enhancements in speed and efficiency in numerical 

calculation, publishing documents in a variety of formats, and enhancements to many built-

in functions. In 2003, in the fifth version of Mathematica the core coding was improved 

and the horizons of Mathematica are more extended (e.g., in numerical linear algebra, in 

numerical solutions for differential  

ii. Basic Features 

• Symbolic, numerical, acoustic, graphical, parallel computations 

• Static and Dynamic computations, Extensibility and elegance, 

• Available for MS Windows, Linux, UNIX, Mac OS operating systems,  

• Powerful and logical language,  

• Extensive library of mathematical functions and specialized packages, 

• An interactive front end with notebook interface, 

• Interactive mathematical typesetting system,  

• Free resources, The Mathematica Learning Center, Wolfram Demon- strations 

Project, Wolfram Information Center.  

iii. Mathematica Language 

 Mathematica language is a very powerful programming language based on systems of 

transformation rules, functional, procedural, and object- oriented programming techniques. 

This distinguishes it from traditional programming languages. It supports a large collection 

of data structures or Mathematica objects (functions, sequences, sets, lists, arrays, tables, 

matrices, vectors, etc.) and operations on these objects (type-testing, selection, 

composition, etc.). The library can be enlarged with custom programs and packages.  



20 
 

 

iv. Basic Principles 

Symbol in Mathematica, symb, refers to a symbol with the specified name, e.g., 

expressions, functions, objects, optional values, results, argument names.  

A name of symbol, name, is a combination of letters, digits, or certain special characters, 

not beginning with a digit, e.g., a12new. Once defined, a symbol retains its value until it is 

changed, cleared, or removed.  

Expression, expr, is a symbol that represents an ordinary Mathematica expression in 

readable form. The head of expr can be obtained with Head[expr]. The structure and various 

forms of expr can be analyzed with TreeForm, FullForm[expr], InputForm[expr], e.g., 

l1={5, 1/2, 9.1, 2+3*I, x, {A,B}, a+b, a*b} 

{Head /@ l1,FullForm[l1],InputForm[l1],TreeForm[l1], TraditionalForm[l1]}  

Mathematica is case sensitive, there is a difference between lowercase and uppercase 

letters, e.g., Sin[Pi] and sin[Pi] are different. All Mathematica functions begin with a capital 

letter. Some functions (e.g., PlotPoints) use more than one capital. To avoid conflicts, it is 

best to begin with a lower-case letter for all user-defined symbols.  

The result of each calculation is displayed, but it can be suppressed by using a semicolon 

(;), e.g., Plot[Sin[x],x,0,2*Pi]; a=9; b=3; c=a*b  

v. Constants 

Types of numbers: integer, rational, real, complex, root, e.g., 

{-5,5/6,-2.3^-4,ScientificForm [-2.3^-4],3-4*1,Root[ ,2]} 

Mathematical constants: symbols for definitions of selected mathematical constants, e.g. , Catalan, 

Degree, E, EulerGamma, I, Pi, Infinity, GoldenRatio, e.g. , {60Degree//N, N [E, 30]  

Scientific constants: valuable tools for scientists and engineers in Physics and Chemistry can be 

applied with the packages Units  and Physical Constants. 

vi. Special constants 

Mathematica uses predefined symbols to represent built-in mathematical constants 

 Pi or 𝜋 is the ratio of the circumference of a circle to its diameter. 



21 
 

 E or 𝑒 is the base of the natural logarithm. 

Both pi and E are treated symbolically and do not have values, as such. However, they 

may be approximated to any degree of precision.  

vii. Functions 

Two classes of functions: pure functions and functions defined in terms of a variable (predefined 

and user-defined functions). 

Pure functions are defined without a reference to any specific variable. The arguments are labeled 

#1, #2, and an ampersand & is used at the end of definition. 

f:=Sin[#1]&;  g:Sin[#1^2+#2^2]& 

{f[x], f[Pi], g[x,y], g[Pi,Pi]} 

Predefined functions. Most of the mathematical functions are predefined. 

Special functions: Mathematica includes all the common special functions of mathematical physics. 

We will discuss some of the more commonly used functions. 

The names of mathematical functions are complete English words or the traditional abbreviations 

(for a few very common functions), e.g., Conjugate, Mod. Person's name mathematical functions 

have names of the form Person Symbol, for example, the Legendre polynomials  𝑃𝑛(𝑥), Legendre 

𝑃[𝑛, 𝑥] .  

viii. Basic Arithmetic Operations 

As we have seen, basic arithmetic operations such as addition are performed by inserting an 

operation symbol between two numbers. Thus the sum of 3 and 5 would be obtained by typing 3 +

5. However, in more advanced applications it is sometimes useful to represent these operations as 

functions. Towards this end Mathematica includes the following: 

 Plus [𝑎, 𝑏, … ]  computes the sum of 𝑎, 𝑏, .. Plus [𝑎, 𝑏] is equivalent to 𝑎 +  𝑏. 

 Times [𝑎, 𝑏, … ]computes the product of 𝑎, 𝑏, …Times [𝑎, 𝑏] is equivalent to 𝑎  

 Subtract [𝑎, 𝑏, … ]computes the difference of 𝑎 and 𝑏. Only two arguments are permitted. 

Subtract [𝑎, 𝑏] is equivalent to 𝑎 −  𝑏. 

 Divide [𝑎, 𝑏, … ]  computes the quotient Of 𝑎 and 𝑏. Only two arguments are permitted. 

 Divide [𝑎, 𝑏] is equivalent to 𝑎/𝑏. 

 Minus [𝑎] produces the additive inverse (negative) of 𝑎. Minus [𝑎] is equivalent to −𝑎. 



22 
 

 Power [𝑎, 𝑏] computes 𝑎𝑏 '. Power [𝑎, 𝑏, 𝑐 ] produces 𝑎𝑏, etc. 

 

ix. Strings 

A string is an (ordered) sequence of characters. Strings have no numerical value and are often used 

as labels for tables, graphs, and other displays. 

In Mathematica, a string is enclosed within quotation marks. Thus • 𝑎𝑏𝑐𝑑𝑒 • is a string of five 

characters. Do not confuse " 𝑎𝑏𝑐𝑑𝑒′ with 𝑎𝑏𝑐𝑑𝑒, as the latter is not a string.  

Mathematica comes equipped with a number of string manipulation commands. 

 StringLength [𝑠𝑡𝑟𝑖𝑛𝑔] returns the number of characters in string. 

 Stringioin , [string1, string2,… ] or string1<> string2<>… . concatenates two or more 

strings to form a new string whose length is equal to the sum of the individual string 

lengths. 

 StringReverse [string] reverses the characters in string. 

 StringDrop eliminates characters from a string. There are five forms of this command. 

 StringDrop [string, n] returns string with its first n characters dropped. 

 StringDrop [string, -n] returns string with its last n characters dropped. 

 StringDrop [string, {n} ] returns string with its nth character dropped. 

 StringDrop [string,{-n}]  returns string with the nth character from the end dropped. 

 StringDrop [string, {𝑚, 𝑛}]  returns string with characters 𝑚 through 𝑛 dropped.  

x. Introduction to Graphing 

The graph of a function offers tremendous insight into the function's behavior and can be of great 

value in the solution of problems. Mathematica offers some very powerful graphics commands 

which are remarkably easy to implement. Although there is a vast array of options available for 

customization of output, in this section we shall deal only with the most rudimentary forms using 

Mathematica's defaults.  

The Plot command plots two-dimensional graphs. 

 Plot[𝑓[𝑥], {𝑥, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥}]  plots a two-dimensional graph of the function 𝑓(𝑥) on the 

Interval 𝑥𝑚𝑖𝑛 ≤ 𝑥 ≤ 𝑥𝑚𝑎𝑥. 



23 
 

 Plot[{𝑓[𝑥], {𝑔[𝑥]}, {𝑥, 𝑥𝑚𝑖𝑛, 𝑥𝑚𝑎𝑥}] plots two functions on one set of axes. This extends in a 

natural way to three or more functions. 

Practical 1 : Solving higher degree equations 

 

Aim:  

 To find the roots of the higher degree equation ′𝒙𝟖 + 𝟓𝒙𝟔 − 𝟑𝒙𝟓 + 𝟐 = 𝟎′ 

(You can solve any transcendental equations using this method) 

Procedure:  

Step 1: Verify it is a polynomial equation or not. 

Step 2: Verify it has an integer power of rational power. 

Step 3: Write the Mathematica code for the given equation in Mathematica desktop. 

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

 

 

Practical 2 : Solving system of equations by matrix method and find the eigen 

values and eigen vectors of a matrix of order 4 by 4 or higher order 

 

Aim:  

To solve the system of equations  

𝒂 + 𝒃 + 𝒄 + 𝒅 = 𝟏𝟎, 𝟐𝒂 + 𝒃 + 𝒄 + 𝒅 = 𝟏𝟏, 𝒂 + 𝟐𝒃 + 𝒄 + 𝒅 = 𝟏𝟐, 𝒂 + 𝒃 + 𝟐𝒄 + 𝒅 = 𝟏𝟑. 

by matrix method and find the eigen values and eigen vectors of a matrix of order 4X4. 

 (You can solve any system of equations by matrix methods of order more than 4 X 4) 

Procedure:  

Step 1: Verify the system of equations are linear or not. 

Step 2: Check the matrix of order. 

Step 3: Write the Mathematica codes to solve given system of equations and find the eigen 

values and eigen vectors in Mathematica desktop. 

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 



24 
 

Results & Conclusion: Get the output and interpret the results. 

 

 

Practical 3 : Solving system of non-linear equations 

 

Aim:  

To solve the system of non linear equations  

𝒙𝟐 + 𝒚𝟐 = 𝟓, 𝟔 𝒙𝟐 − 𝒚𝟐 = 𝟐. 

(You can solve any system of non linear equations of any order.) 

 

Procedure:  

Step 1: Verify the system of equations are non linear. 

Step 2: Write the Mathematica codes to solve given system of equations and find the eigen 

values and eigen vectors in Mathematica desktop. 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

 

 

Practical 4 : Finding the differentiation of different functions of second and 

third derivatives 

 

Aim:  

To find the second the third derivative of the function  

𝐬𝐢𝐧 (
√𝒙𝟐 − 𝟓𝒙 + 𝟑

𝐥𝐨𝐠(𝟐𝒙 + 𝟓)
) 

(You can find any higher order derivative for any difficult functions.) 

 

Procedure:  

Step 1: If possible you can simplify the function. 

Step 2: Write the Mathematica codes to find the second the third derivative of the function 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 



25 
 

Results & Conclusion: Get the output and interpret the results. 

 

 

 

Practical 5 : Finding the Integration of different functions with limits 

 

Aim:  

To find the  

∫ 𝐞−𝐱𝟐
 𝐝𝐱

∞

𝟎

 

(You can find any higher order derivative for any difficult functions.) 

 

Procedure:  

Step 1: If possible you can simplify the function. 

Step 2: Write the Mathematica codes to find the value of the integral of the given function 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

Practical 6 : Evaluation of double integrals and triple integrals 

 

Aim:  

To find the  

∫ ∫ ∫ 𝟐

𝟏−𝐱−𝐲

𝟎

(𝐱𝟐 + 𝐲𝟐

𝟏−𝐱

𝟎

+ 𝐳𝟐) 𝐝𝐱𝐝𝐲𝐝𝐳

𝟏

𝟎

 

(You can find double integral with given limit for any functions.) 

 

Procedure:  

Step 1: If possible you can simplify the function. 

Step 2: Write the Mathematica codes to find the value of the integral of the given function 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 



26 
 

Practical 7 : Solving ordinary differential equations with initial condition 

 

Aim:  

To solve the ordinary differential equations with initial condition. 

𝐝𝟐𝐲

𝐝𝐱𝟐
+  𝟒𝒚 = 𝟐𝒙, 𝒚(𝟎) = 𝟏 

(You can solve any ordinary differential equations of higher order.) 

 

Procedure:  

Step 1: verify the given function is ordinary differential equation with initial condition. 

Step 2: Write the Mathematica codes to solve the given differential equation. 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

 

Practical 8 : Solving system of ordinary differential equations 

 

Aim:  

To solve the simultaneous ordinary differential equations with initial conditions. 

𝐝𝟐𝐲

𝐝𝐭𝟐
+  𝟒𝒚 = 𝟐𝒕,

𝐝𝟐𝐱

𝐝𝐭𝟐
 −  𝒙 = 𝐬𝐢𝐧 𝒕 , 𝒚(𝟎) = 𝒙(𝟎) = 𝟏 

(You can solve any simultaneous ordinary differential equations of higher order.) 

 

Procedure:  

Step 1: verify the given function is simultaneous ordinary differential equations with initial 

condition. 

Step 2: Write the Mathematica codes to solve the given simultaneous differential equations. 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

  



27 
 

Practical 9 : Creating and plotting 2-D and 3-D graphs 

 

Aim:  

To Plot the functions 𝒚 = 𝒙𝟐 and 𝒚 = 𝟐𝒙 + 𝟏𝟎, −𝟓 ≤ 𝒙 ≤ 𝟓, on the same set of axes. 

(You can plot any number of graphs for any interval in one set of axes.) 

Procedure:  

Step 1: verify how many graphs are given to plot. 

Step 2: Plot given set of graphs in one set of axes to compare these. 

Step 3: Write the Mathematica codes to plot the given set of graphs in one set of axes. 

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

Practical 10 : Solving Linear programming problems 

 

Aim:  

To solve the following set of linear programming problem: 

𝑴𝒂𝒙 𝒛 =   𝟒𝟎𝒙 + 𝟏𝟎𝟎𝒚 

subject to the conditions 

𝟏𝟐𝒙 + 𝟔𝒚 ≤ 𝟑𝟎𝟎𝟎 

𝟒𝒙 + 𝟏𝟎𝒚 ≤  𝟐𝟎𝟎𝟎  

𝟐𝒙 + 𝟑𝒚 ≤ 𝟗𝟎𝟎 , 

𝒙, 𝒚 ≥ 𝟎 

(You can solve minimization type of linear programming problems.) 

Procedure:  

Step 1: Verify given linear programming is linear or not. 

Step 2: Verify it is maximize of minimize. 

Step 3: Write the Mathematica code for the given equation in Mathematica desktop. 

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 



28 
 

 

 

 

 

 

 

MAPLE 

 

  



29 
 

Introduction to Maple 

 

i. History 

 We begin with a brief history of Maple, from a research project at a university to a 

leading position in education, research, and industry.  The first concept of Maple and initial 

versions were developed by the  Symbolic Computation Group at the University of Waterloo 

in the early 1980s. In 1988, the new Canadian company Waterloo Maple Inc., was created to 

commercialize the software. While the development of Maple was done mainly in research 

labs at Waterloo University and at the University of Western Ontario, with important 

contribution from worldwide research groups in other universities.  In 1990, the first graphical 

user interface was introduced for Windows in version V.  In 2003, a Java “standard” user 

interface was introduced in version 9.  In 2005, Maple version 10 comes with a “document 

mode” as part of the user interface.  In 2007, Maple version 11 is introduced, it comes with an 

improved smart document environment to facilitate the user-interface learning curve. This tool 

integrates in an optimal way, all different sources and types of related information to the 

problem that the user is solving in that moment. This version includes more mathematical tools 

for modelling and problem analysis. 

Maple is a symbolic and numeric computing environment as well as a multi-paradigm 

programming language. It covers several areas of technical computing, such as symbolic 

mathematics, numerical analysis, data processing, visualization, and others. A toolbox, 

MapleSim, adds functionality for multidomain physical modeling and code generation. 

 

Maple's capacity for symbolic computing include those of a general-purpose computer 

algebra system. For instance, it can manipulate mathematical expressions and find symbolic 

solutions to certain problems, such as those arising from ordinary and partial differential 

equations. 

 Maple is developed commercially by the Canadian software company Maplesoft. The 

name 'Maple' is a reference to the software's Canadian heritage. 

  



30 
 

ii  Basic Features 

 Fast symbolic, numerical computation, and interactive visualization,  

 Easy to use, help can be found within the program or on the Internet,  

 Extensibility, the system can easily incorporate new user defined capabilities to 

compute specific purpose applications,  

 Accessible to large numbers of students and researchers,  

 Available for almost all operating systems (MS Windows, Linux. Unix, Mac OS),  

 Powerful programming language, intuitive syntax, easy debugging,  

 Extensive library of mathematical functions and specialized packages,  

 Two forms of interactive interfaces: a command-line and a graphic environment,  

 Free resources, collaborative character of development, Maple Application Center, 

Teacher Resource Center, Student Help Center, Maple Community, 

 Understandable, open-source software development path. 

iii Basic Concepts 

 We type the Maple function to the right of the prompt symbol >, and at the end of the 

function we place a semicolon1, and then press Enter (or Shift+Enter to continue the function 

onto the next line). Maple evaluates the function, displays the result, and inserts a new prompt. 

 >?introduction 

 > evalf(gamma,40); 

 > solve(11*x^3-9*x+17=0, x); 

 > sort(expand((y+1)^(10))); 

 > plot({4*sin(2*x),cos(2*x)^2},x=0..2*Pi); 

 > plot3d(cos(x^2+y^2),x=0..Pi,y=0..Pi); 

Above (typing line by line), the first line gives you introductory information about Maple, the 

second line returns a 40-digit approximation of Euler’s constant γ, the third line solves the 

equation 11x3 −9x+17=0 for x, the fourth line expresses (y +1)10 in a polynomial form, the 

fifth line plots the functions 4 sin(2x) and cos2(2x) on the interval [0, 2π], and the last line plots 

the function cos(x2+y2) on the rectangle [0,π]×[0,π]. 

  



31 
 

iv Basic Principles 

Arithmetic operators: + - * / ^ mod.  

Logic operators: and, or, xor, implies, not. 

Relation operators: <, <=, >, >=, =, <>. 

A variable name, var, is a combination of letters, digits, or the underline symbol ( ), beginning 

with a letter, e.g., a12 new. 

Abbreviations for the longer Maple functions or any expressions: alias, e.g., 

alias(H=Heaviside); diff(H(t),t); to remove this abbreviation, alias(H=H); 

Maple is case sensitive, there is a difference between lowercase and uppercase letters, e.g., 

evalf(Pi) and evalf(pi). 

Various reserved keywords, symbols, names, and functions, these words cannot be used as 

variable names, e.g., operator keywords, additional 

language keywords, global names that start with ( ) (see ?reserved, ?ininames, ?inifncs, 

?names). 

The assignment/unassignment operators: a variable can be “free” (with no assigned value) or 

can be assigned any value (symbolic, numeric) by the assignment operators a:=b or 

assign(a=b). To unassign (clear) an assigned variable (see ?:= and ?'): x:='x', evaln(x), or 

unassign('x'). 

The difference between the operators (:=) and (=). The operator var:=expr is used to assign expr 

to the variable var, and the operator A=B — to indicate equality (not assignment) between the 

left- and the right-hand sides (see ?rhs), e.g., Equation:=A=B; Equation; rhs(Equation); 

lhs(Equation); 

The range operator (..), an expression of type range expr1..expr2, e.g., a[i] $ i=1..9; 

plot(sin(x),x=-Pi..Pi); 

Statements, stats, are input instructions from the keyboard that are executed by Maple (e.g., 

break, by, do, end, for, function, if, proc, restart, return, save, while, not). 



32 
 

The new worksheet (or the new problem) it is best to begin with the statement restart for 

cleaning Maple’ s memory. All examples and problems in the book assume that they begin 

with restart. 

 restart: with(LinearAlgebra): d:=10; 

 for i from 1 to 7 do 

 n:=2^i; A:=RandomMatrix(n,n,generator=-d..d): 

 t:=time(ReducedRowEchelonForm(A)); print(i,n,t); od: 

The statement separators semicolon (;) and colon (:). The result of a statement followed with a 

semicolon (;) will be displayed, and it will not be displayed if it is followed by a colon (:), e.g., 

plot(sin(x),x=0..Pi); plot(sin(x),x=0..Pi): An expression, expr, is a valid statement, and is 

formed as a combination of constants, variables, operators and functions.  Data types, every 

expression is represented as a tree structure in which each node (and leaf) has a particular data 

type. For the analysis of any node and branch, the functions type, what type, nops, op can be 

used. A boolean expression, bexpr, is formed with the logical operators and the relation 

operators. 

An equation, eq, is represented using the binary operator (=), and has two operands, the left-

hand side, lhs, and the right-hand side, rhs.  Inequalities, ineq, are represented using the relation 

operators and have two operands, the left-hand side, lhs, and the right-hand side, rhs. 

A string, str, is a sequence of characters having no value other than itself, cannot be assigned 

to, and will always evaluate to itself. For instance, x:="string"; and sqrt(x); is an invalid 

function. Names and strings can be used with the convert and printf functions.  Incorrect 

response. If you get no response or an incorrect response you may have entered or executed 

the function incorrectly. Do correct the function or interrupt the computation (the stop button 

in the Tool Bar menu). Maple is sensitive to types of brackets and quotes. 

v Types of brackets: 

Parentheses (expr), for grouping expressions, (x+9)*3, for delimiting the arguments of 

functions, sin(x). 

 Square brackets [expr], for constructing lists, [a,b,c], vectors, matrices, arrays. 

 Curly brackets {expr}, for constructing sets, {a,b,c}. 

  



33 
 

vi Types of quotes: 

Forward-quotes 'expr', to delay evaluation of expression, 'x+9+1', to clear variables, x:='x'; 

Back-quotes `expr`, to form a symbol or a name, `the name:=7`; k:=5; print(`the value of k 

is`,k); 

Double quotes "expr", to create strings, and a single double quote ", to delimit strings. 

Previous results (during a session) can be referred with symbols % (the last result), %% (the 

next-to-last result), %%...%, k times, (the k-th previous result), a+b; %^ 2; %%^ 2; 

Comments can be included with the sharp sign # and all characters following it up to the end 

of a line. Also the text can be inserted with Insert →Text. 

Maple source code can be viewed for most of the functions, general and specialized (package 

functions).  interface(verboseproc=2);  print(factor); print(`plots/arrow`); 

vii Constants 

Types of numbers: integer, rational, real, complex, root, e.g., -55, 5/6, 3.4, -2.3e4, Float(23,-

45), 3-4*I, Complex(2/3,3); RootOf( Z^3-2,index=1); 

Predefined constants: symbols for definitions of commonly used mathematical constants, true, 

false, gamma, Pi, I, infinity, Catalan, FAIL, exp(1) (see ?ininames, ?constants). 

An angle symbolically has dimension 1. Maple knows many units of angle (see? Units / 

angle), e.g., convert(30*degrees,radians); convert(30,units,degrees,radians); 

The packages ScientificConstants and Units (for ver ≥7) provide valuable tools for scientists 

and engineers in Physics and Chemistry (see ?ScientificConstants, ?Units). 

viii Functions 

Functions or function expressions have the form f(x) or expr(args) and represent a function 

call, or application of a function (or procedure) to arguments (args). Active functions 

(beginning with a lowercase letter) are used for computing, e.g., diff, int, limit.  Inert functions 

(beginning with a capital letter) are used for showing steps in the problem-solving process; 

e.g., Diff, Int, Limit.  Two classes of functions: the library functions (predefined functions) and 

user-defined functions.  Predefined functions: most of the well known functions are predefined 

by Maple and they are known to some Maple functions (diff, evalc, evalf, expand, series, 

simplify). In addition, numerous special functions are defined (see ?FunctionAdvisor). We will 



34 
 

discuss some of the more commonly used functions.  Elementary trascendental functions: the 

exponential function, the natural logarithm, the general logarithm, the common logarithm, the 

trigonometric and hyperbolic functions and their inverses. 

 exp ln log log[b] log10 ilog2 

 sin cos tan cot sec csc 

 sinh cosh tanh coth sech csch 

 arcsin arccos arctan arccot arcsec arccsc 

 arcsinh arccosh arctanh arccoth arcsech arccsch 

 exp(x^2); evalf(ln(exp(1)^3)); evalf(tan(3*Pi/4)); 

 evalf(arccos(1/2)); evalf(tanh(1)); 

 

ix Procedures and Modules 

In Maple language there are two forms of modularity: procedures and modules. 

A procedure (see ?procedure) is a block of statements which one needs to use repeatedly. A 

procedure can be used to define a function (if the function is too complicated to write by using 

the arrow operator), to create a matrix, a graph, a logical value, etc. 

proc(args) local v1; global v2; options ops; stats; end proc; 

proc(args) local v1; global v2; options ops; stats; end; 

Here args is a sequence of arguments, v1 and v2 are the names of local and global variables, 

ops are special options (see ?options), and stats are statements that are realized inside the 

procedure. 

x Control Structures 

In Maple language there are essentially two control structures: the selection structure if and 

the repetition structure for, 

 if cond1 then expr1 else expr2 end if; 

 if cond1 then expr1 elif cond2 then expr2 else expr3 end if; 

 for i from i1 by step to i2 do stats end do; 

 for i from i1 by step to i2 while cond1 do stats end do; 

 for i in expr1 do stats end do; for i in expr1 do stats od; 

 for i in expr1 while expr2 do stats end do; 



35 
 

where cond1 and cond2 are conditions, expr1, expr2 are expressions, stats are statements, i, i1, 

i2 are, respectively, the loop variable, the initial and the last values of i. These operators can be 

nested. The operators break, next, while inside the loops are used for breaking out of a loop, to 

proceed directly to the next iteration, or for imposing an additional condition. The operators 

end if and fi, end do and od are equivalent. 

 

xi Complex Algebra 

Maple and Mathematica perform complex arithmetic automatically, all operations are 

performed by assuming that the basic number system is the complex field C. In both systems, 

the imaginary unit i of the complex number x+y*I is denoted by I. Complex numbers and 

variables 

abs(z); Re(z); Im(z); conjugate(z); argument(z); evalc(z); signum(z); csgn(z); polar(z); 

polar(r,theta); convert(z,polar); with(RandomTools): enerate(complex(integer(range=a..b))); 

abs, Re,Im, the absolute value and the real and imaginary parts, conjugate, argument, evalc, 

the complex conjugate, the complex argument, and complex evaluation function, signum, csgn, 

the sign of a real or complex number and the sign function for complex expressions, polar, 

convert,polar, polar representation of complex numbers and rewriting an expression in polar 

form, Generate,complex (of the RandomTools package), generating pseudorandom 

complex numbers. 

 z1:=5+I*7; abs(z1); Re(z1); Im(z1); conjugate(z1), 

 argument(z1); signum(z1); csgn(z1); polar(z1); 

 z2:=x+I*y; evalc(abs(z2)); evalc(Re(z2)); 

 assume(x,real); assume(y,real); about(x,y); Re(z2); Im(z2); 

 unassign('x','y'); about(x,y); evalc(signum(z2)); 

 evalc(polar(r,theta)); map(evalc,convert(z2, polar)); 

 expand((1-I)^4); evalc(sqrt(-9)); expand((3+I)/(4-I)); 

 with(RandomTools): Generate(list(complex(float(range=1..9)),9)); 

 interface(showassumed=0): assume(k,complex); 

 f:=x->exp(-(Re(k)+I*Im(k))*(a+I*c*t)); f(x); 

 simplify(evalc(convert(f(x),polar))); 

 

xii Complex Functions and Derivatives 

Analytic and harmonic functions, multivalued “functions” : 



36 
 

 f:=z->expr; diff(f(z),z); F:=evalc(f(x+I*y)); limit(f(z),z=z0); 

 u:=(x,y)->evalc(Re(F));v:=(x,y)->evalc(Im(F)); w:=(x,y)->expr; 

 w1:=unapply(u(x,y)+I*v(x,y),x,y); limit(w(x,y),{x=x0,y=y0}); 

xiii Numerical solutions of nonlinear equations and systems 

Digits:=n;  evalf(solve(Eq,var));   evalf(root(x,n)); 

fsolve(Eq,var,ops);     fsolve(Eq,var=a..b,ops); 

fsolve(Eq,var,complex);    fsolve(f,var=a..b,ops); 

with(RootFinding);     (f); NextZero(f(x),x0,ops); 

Isolate([f1,f2],[x1,x2]);    Homotopy([f1,f2],ops); 

use RealDomain in solve(eq,var); end use; 

 

fsolve, solving equations using iterative methods (the Newton methods) with options 

(see ?fsolve[details]), 

fsolve(f,var=a..b,ops), for solving an equation defined as a procedure f, 

NextZero, Isolate, Homotopy, functions of the RootFinding package, finding next real zero of 

a function f, isolating the real roots of a univariate polynomial or polynomial system, finding 

numerical approximations to roots of systems of polynomial equations, root, finding n-th root 

of an algebraic expression, the functions of the RealDomain package, performing computations 

under the assumption that the basic number system is the field of real numbers R. 

 

 Digits:=trunc(evalhf(Digits));  F:=proc(x) sin(x)^2-1 end; 

 fsolve(F(x)=0,x=0..Pi/2);  fsolve(sin(x)^2-1,x=0..Pi/2); 

 fsolve(x->F(x),0..Pi/2); 

 evalf(root(5,3)); evalf(root[3](5));  evalf(solve(sin(x)^2-1,x)); 

 with(RootFinding);  NextZero(x->sin(x), evalf(Pi/10)); 

 Isolate(x^2-2*x+1);  Isolate([x^2-2*x+1,y^2+3*y-5],[x,y]); 

 Homotopy([x^2+x+1,y^2-y-1]);  use RealDomain in solve(x^4-1,x); 

 end use;  with(RealDomain):  fsolve(x^4-1,x,complex); 

xiv Operations on Functions 

Let us consider the most important results describing various operations on functions in both 

systems. 

 (f1@f2)(x); ((f1@f2)@f3)(x); (f1@f2@...@fn)(x); (f@@n)(x); 



37 
 

 f1:=(f::function)->apply(op(0,f),x); f1(f2()); 

 apply(f,expr); apply(f,x1,...,xn); apply(f,[x1,...,xn]); 

 map(f,expr); map(f,[x1,...,xn]); map2(f,g,[x1,...,xn]); 

 map(x->expr,expr); map(x->expr,[x1,...,xn]); 

 The Maple composition operator @, 

Applying functions repeatedly, the repeated composition operator @@, Defining a function 

which takes a function name as an argument, ->, apply, Applying functions to other 

expressions and objects (e.g., lists), apply, Applying functions to each elements of other 

expressions and objects, map, map2, Functions without names (or anonymous functions), ->, 

map. 

 n:=5; (f@g)(x); ((f@g)@h)(x); (f@@n)(x); 

 f1:=(f::function)->apply(op(0,f),x+a)+apply(op(0,f),x-a); 

 f1(F()); apply(g,x^2+y^2); apply(g,x^2,y^2); 

 apply(g,[x^2,y^2]); map(g,x^2+y^2); map(g,[x^2,y^2]); 

 map2(f,g,[x^2,y^2]); map(x->x^2,x+y); 

 l1:=map(x->x^2,['x||i'$'i'=1..9]); convert(l1,`+`); 

 

xv Inverse functions 

The inverse function tables eval(invfunc), eval(Invfunc), the invfunc, Invfunc, unprotect 

functions: 

 eval(invfunc);   eval(Invfunc);   invfunc[sin];   (sin@@(-1))(1); 

 unprotect('invfunc');  invfunc[f]:=g;   simplify((f@@(-1))@@n); 

 

xvi Matrices 

In matrix theory, a matrix is a rectangular table (rows and columns) of elements (numbers or 

symbols) and for which certain axioms of algebra hold. Matrices are used for describing 

equations and linear transformations, analyzing data that depend on multiple parameters and 

more.  In our work we consider matrices whose elements are symbols and real and complex 

numbers. In symbolic mathematics, there exist differences in matrix representations, similar to 

the concept of a vector. 



38 
 

In Maple, a matrix is a mathematical object, but also a matrix can be defined as a data object 

represented as a two-dimensional array, and these objects are different. For example, one-

column matrices and vectors, matrices and two-dimensional arrays are different objects 

in Maple.  

xvii Matrix representations and components 

 with(LinearAlgebra):   Matrix([[a11,...,a1m],...,[an1,...anm]]); 

 <<a11|...|a1m>,...,<an1|...|anm>>;   map(x->f(x),M); 

 <<a11,...,an1>|...|<a1m,...,anm>>;   Matrix(n,m,(i,j)->f(i,j)); 

 Matrix(n,m,ops); Matrix(n,m,fill=c);   Matrix(n,m,symbol=a); 

 with(Student[LinearAlgebra]):   A:=MatrixBuilder(); M[i,j]; 

 M[i,1..-1];M[1..-1,j];M[a..b,c..d];   SubMatrix(M,[a..b],[c..d]); 

 Dimension(M);  ColumnDimension(M);  RowDimension(M); 

Matrix([[a11,..., a1m],...,[an1,...anm]]), constructing a matrix row-byrow (as a list of lists), 

<<a11|...|a1m>,...>>, <<a11,...,an1>|...>>, constructing a matrix, respectively row-by-row and 

column-by-column (as vectors), these forms are sufficiently slow for large matrices, 

MatrixBuilder (of the package Student[LinearAlgebra]), an interactive construction of a matrix 

(up to 5 × 5),  

Matrix(n,m,(i,j)->f(i,j)), map(x->f(x),M), constructing a matrix n × m with elements that are 

defined, respectively, by a function f(i, j) and a function f(x) applied to each element of matrix 

M (for more details see Chapter 1), 

Matrix(n,m,fill=c), Matrix(n,m,symbol=a), constructing a matrix n × m where, respectively, 

each element is c and the symbolic elements are aij. In general form, matrices can be 

constructed defining various options in the function Matrix (for more details see ? Matrix), 

M[i,j], M[i,1..-1], M[1..-1,j], M[a..b,c..d], extracting elements, rows, columns, and  

submatrices of the matrix M, 

Dimension, RowDimension, ColumnDimension, determining the dimension, row dimension, 

and column dimension of a matrix. 

xviii Eigenvalues and Eigenvectors 

Eigenvectors1 of a linear transformation T are vectors (_=0) that satisfy the equation Tx = λx 

for a scalar λ, called eigenvalue of T, that corresponds to the eigenvector x. An eigenspace of 



39 
 

a linear transformation for a particular eigenvalue is a space formed by all the eigenvectors 

associated with this eigenvalue. 

A linear transformation can be considered as an operation on vectors that usually changes its 

magnitudes and directions. The direction of the eigenvector of T does not change (for positive 

eigenvalues) or changes in the opposite direction (for negative eigenvalues). The eigenvalue of 

an eigenvector is a scaling factor by which it has been multiplied. The spectrum of a linear 

transformation defined on finite-dimensional vector spaces is the set of all eigenvalues. 

These concepts are of great importance in various areas of mathematics, especially in linear 

algebra, functional analysis, nonlinear mathematical equations, etc. We consider the most 

important concepts and methods, related to eigenvalues and eigenvectors, in both systems of 

symbolic algebra: characteristic matrices and polynomials, eigenvalues, eigenvectors, minimal 

polynomials, the diagonalization and diagonal factorization of a matrix, the trace of a matrix, 

the Cayley–Hamilton theorem. 

 with(LinearAlgebra):  Trace(M); z:=Eigenvectors(M); Eigenvalues(M); 

 CharacteristicMatrix(M,x);  CharacteristicPolynomial(M,x); 

 MinimalPolynomial(M,x);  p:=z[2];  d:=DiagonalMatrix(z[1]); 

 Equal(d,MatrixInverse(p).M.p);   Equal(M,p.d.MatrixInverse(p)); 

 

xiv Points in the Plane and Space 

 with(plots):    pointplot(points,ops); 

 pointplot3d(points,ops);  matrixplot(matrix,ops); 

 listplot(list,ops);   listplot3d(list,ops); 

 with(Statistics):   ScatterPlot(seqX,seqY,ops); 

 

xx Laplace Transforms 

In Maple, the integral transforms (e.g., Fourier, Hilbert, Laplace, Mellin integral transforms) 

can be studied with the aid of the inttrans package. 

 

 

 

 

 

 

 



40 
 

 

 

 

Practical 1 : Simple programs using Mathematical constants 

 

Aim: To find the double factorial of a number ‘n’. 

 

(You can find double factorial of any number) 

 

Procedure:  

Step 1: Verify given number is integer or not. 

Step 2: Write the Maple program to find the double factorial of a given number.  

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion: Get the output and interpret the results. 

 

Practical 2 : Programs using complex functions 

 

Aim:  To find the derivatives of the functions 𝒇𝟏(𝒛) = 𝒛𝟐 + 𝒊𝟓𝒛 − 𝟏 𝒂𝒏𝒅  

𝒇𝟐(𝒛)  =  (𝒇𝟏(𝒛))𝟓. 

 

 (You can find the higher derivative of a given complex functions) 

Procedure:  

Step 1: Verify the given function is complex or not. 

Step 2: Desire to find first, second or higher derivative. 

Step 3: Write a maple program to find the desired derivates of a given complex functions. 

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 

Results & Conclusion :  Get the output and interpret the results. 

 

  



41 
 

Practical 3 :  Numerical solutions of nonlinear equations and systems 

 

Aim:  To find the root of the non linear equation 𝒙𝟑 − 𝟐𝒙 + 𝟐 = 𝟎 

 

 (You can find root of any transcendental equation of any degree.) 

Procedure:  

Step 1: Verify the given equation is non linear. 

Step 2: Fix a lower limit, upper limits and tolerance. 

Step 3: Write a maple program to find the root of the given non linear equation. 

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 

 

Practical 4 : Solving system of linear equations using Jacobi method 

 

Aim:  To solve the system of equations  

𝟑𝒂 + 𝟎. 𝟏𝒃 + 𝟎. 𝟐𝒄 = 𝟕. 𝟖𝟓,   

𝟎. 𝟏𝒂 + 𝟕𝒃 + 𝟎. 𝟑𝒄 = −𝟏𝟗. 𝟑,   

                                                        𝟎. 𝟐𝒂 + 𝟎. 𝟑𝒃 + 𝟏𝟎𝒄 = 𝟕𝟏. 𝟒.  by Jacobi method. 

 

 (You can solve any system of equations by Jacobi methods of order more than 4 by 4) 

Procedure:  

Step 1: Verify the system of equations are linear or not. 

Step 2: Check the matrix of order and diagonally dominance. 

Step 3: Write the Maple program to solve given system of Equations by Jacobi method.  

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 

 

 

 

 

 



42 
 

Practical 5 : Program using Trigonometric and Hyperbolic Expressions 

 

Aim:  To find Maclaurin series expansion for tan(x) and also find the inverse series of 

the given series. 

 

 (You can express any trigonometrical functions in Meclaurin series.) 

Procedure:  

Step 1: Verify the given function is trigonometrical or not. 

Step 2: Fix a number of terms in the series. 

Step 3: Write a maple program to express the given trigonometrical functions in Meclaurin 

series. 

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 

 

 

Practical 6 : Finding Eigen values and Eigen vectors of a matrix 

 

Aim:  To find Eigen values, Eigen vectors characteristic equation and diagonal 

matrix of the given matrix. 

 

(You can find Eigen values, Eigen vectors characteristic equation and  

diagonal matrix of the given matrix any order.) 

Procedure:  

Step 1: Verify the given matrix is square or not. 

Step 2: Write a maple program to Eigen values, Eigen vectors characteristic equation and  

             diagonal matrix of the given matrix 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 

 



43 
 

 

Practical 7 : Plotting Points in the Plane and Space 

 

Aim:  To draw a scatter plot in plane and the space. 

 

 (You can draw any plane curve and the space curves.) 

Procedure:  

Step 1: Verify the given data is a data form or function form. 

Step 2: Fix a scale in two or three dimensions. 

Step 3: Write a maple program to draw a scatter plot in plane and the space 

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 

 

Practical 8 : Analyse data using Central Tendency and Measures of 

dispersion and distributions 

 

Aim:  To find mean, standard deviation and polynomial fit for the data: 

X 1 2 3 4 5 6 

Y 25 26 26 25 24 22 

  

(You can find mean, standard deviation and polynomial fit for any given data.) 

Procedure:  

Step 1: Verify the given data is a data form or function form. 

Step 2: Write a maple program to find mean, standard deviation and polynomial fit for the 

given data. 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 

 



44 
 

Practical 9 : Find the Laplace integral transforms for different functions 

 

Aim: To find the Laplace integral transforms of the function 𝒕𝟐 𝐜𝐨𝐬 𝟐𝒕.  

 

(You can find Laplace transform of any functions like exponential, 

 trigonometric and algebraic functions. Also combination of these.) 

Procedure:  

Step 1: Verify the given function is exponential, trigonometric and algebraic functions. Also 

combination of these. 

Step 2: Write a maple program to find the desired derivates of a given complex functions. 

Step 3: Run the Program. 

Step 4: If any error occurs in your code then clear the errors and again run. 

Step 5: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 

 

Practical 10 : Solving the differential equations. 

 

Aim:  To find the solution of the differential equation  
𝒅𝒚

𝒅𝒕
+  𝒕𝟐 = 𝟎.  

 

(You can find the solution of the differential equation of any order and any degree.) 

Procedure:  

Step 1: Verify the equation is differential equation or not. 

Step 2: Check the initial conditions are given or not.  

Step 3: Write a maple program to find the solution of the given differential equations. 

Step 4: Run the Program. 

Step 5: If any error occurs in your code then clear the errors and again run. 

Step 6: Take the output as you like. 

 

Results & Conclusion : Get the output and interpret the results. 

 

 


