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Chapter 3

Linear Harmonic Oscillator

3.1 Introduction

The wave mechanical theory of the harmonic oscillator provides the basis for under-

standing a wide variety of physical systems like vibration of diatomic and polyatomic

molecules, specific heat capacities of solids,electromagnetic field etc... Let us consider

a free particle executing linear harmonic oscillations along the x-axis .The Hamiltonian

for a this particle is given as

H =
p2

2m
+

1

2
kx2, (3.1)

where

p = −i} d
dx

k = mω2. (3.2)

Here m is the mass and p is the momentum of the particle and k is the force per unit

displacement and ω is the critical angular frequency of oscillations. We know the time

independent Schroedinger equation for the oscillator can be written as

Hu(x) = Eu(x). (3.3)

Substituting Eqs. (3.1) & (3.2) in the above equation gives(
− }2

2m

d2

dx2
+

1

2
mω2x2

)
u(x) = Eu(x) (3.4)
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3.2 Dimensionless Form: Conversion to Hermite Differen-

tial Equation

Let as change the independent variable in Eq. (3.4) from x to ρ such that

ρ = αx (3.5)

α =

√
mω

}
(3.6)

α2 =
mω

}
. (3.7)

Then
d

dx
=

(
dρ

dx

)
d

dρ
, hence

d

dx
= α

d

dρ
and

d2

dx2
= α2 d

1

dρ2
.

Using these the Schroedinger equation, (3.4) can be converted into a dimensionless form

as

d2u(ρ)

dρ2
+ (λ− ρ2)u(ρ) = 0, (3.8)

where

λ =

(
2E

}ω

)
(3.9)

and

u(ρ) ' u(αx). (3.10)

Proof:

Replacing the independent variable x to ρ, in Eq. (3.4), gives(
− }2

2m

)
α2d2

dρ2
u(αx) +

1

2
mω2x2u(αx) = Eu(αx)

(
−}2α2

2m

)
d2u(ρ)

dρ2
+

1

2
mω2x2u(ρ) = Eu(ρ)

Multiplying the above equation by

(
− 2m

}2α2

)
and rearranging it gives

(
− 2m

}2α2

)
×
{(
−}2α2

2m

)
d2u(ρ)

dρ2
+

1

2
mω2x2u(ρ)

}
=

(
− 2m

}2α2

)
× Eu(ρ)
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But (
− 2m

}2α2

)
×
(
−}2α2

2m

)
= 1,

Further (
− 2m

}2α2

)
1

2
mω2x2 =

(
m2ω2

}2

)
x2

α2

=
α4x2

α2

= α2x2

= ρ2

and

E

(
− 2m

}2α2

)
= E

(
−2m

}2

)
1

α2

= E

(
−2m

}2

)(
}
mω

)
=

(
2E

}ω

)
.

As E, } and ω are constants, we can define the RHS as a new constant λ such

that

λ =

(
2E

}ω

)
.

Let the wavefunction u(ρ) be expressed in terms of a new function ν(ρ), such that

u(ρ) = e−ρ
2/2ν(ρ) (3.11)

Finding the first order and second order derivatives of u(ρ) with respect to ρ gives

u̇(ρ) = e−ρ
2/2 [ ν̇ (ρ)− ρ ν(ρ) ] (3.12)

ü(ρ) = e−ρ
2/2
[
ν̈(ρ) − 2ρ ν̇(ρ) + (ρ2 − 1) ν(ρ)

]
. (3.13)

Substituting u(ρ) and its derivatives in Eq. (3.8) gives

e−ρ
2/2
[
ν̈(ρ) − 2ρ ν̇(ρ) + (ρ2 − 1) ν(ρ)

]
+ (λ− ρ2) e−ρ2/2 ν(ρ) = 0. (3.14)
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Simplifying this equation gives

[ ν̈(ρ) − 2ρ ν̇(ρ) + (λ− 1) ν(ρ) ] = 0. (3.15)

Let us assume the series solution of the Eq. (3.15) and its first order and second order

derivatives with respect to ρ as

ν(ρ) =

∞∑
s=σ

cs ρ
s, (3.16)

ν̇(ρ) =
∞∑
s=σ

cs s ρ
s−1, (3.17)

ν̈(ρ) =
∞∑
s=σ

cs s (s− 1) ρs−2, (3.18)

Substituting these, Eq. (3.15) becomes

∞∑
s=σ

cs
[
s (s− 1) ρs−2 − 2 ρ sρs−1 + (λ− 1)ρs

]
= 0. (3.19)

If Eq. (3.19) is to hold good, then the individual terms in the sum should be equal to

zero. Hence taking the coefficients of ρs for any s ≥ 0 and equating them to zero ⇒

cs+2 (s+ 2)(s+ 1)− cs [ 2s− (λ− 1) ] = 0. (3.20)

From the above equation, Eq. (3.20), the recursion relation can be obtained as

cs+2

cs
=

[ 2s− (λ− 1) ]

(s+ 2)(s+ 1)
. (3.21)

This Eq. (3.21) determines the behaviour of an infinite series. However what we require

is that the equation should be a finite degree polynomial. Hence to convert the Eq.

(3.15) to a finite degree polynomial, we truncate the series at some finite term, say nth

term, by assuming

s = n (3.22)

λ = 2n+ 1. (3.23)

This will cause Eq. (3.21) to become

cs+2

cs
= 0. (3.24)

This means the coefficient cn 6= 0, but the coefficients cn+1, cn+2, cn+3, · · · and all the

succeeding values are zero. Under this condition, Eq. (3.15) when multiplied by a



Chapter 3. Linear Harmonic Oscillator 61

constant factor, say Nn gets converted into the Hermite Differential Equation

Ḧn(ρ)− 2ρ Ḣn(ρ) + 2nHn(ρ) = 0. (3.25)

The solutions of this equation are the familiar Hermite polynomial function Hn(ρ).

In terms of these Hermite Polynomial Function, the wave function un(ρ) for the LHO

can be given as

un(ρ) = Nne
−ρ2/2Hn(ρ), (3.26)

where, Nn=Normalization constant.

3.3 To find the Normalization Constant (Nn)

We know the orthonormal property of the wavefunctions is given as∫ +∞

−∞
u∗mun dx = δm,n. (3.27)

Substituting Eq. (3.26) in Eq. (3.27) gives∫ +∞

−∞
Nme

−ρ2/2Hm(ρ)Nne
−ρ2/2Hn(ρ)

(
dρ

α

)
= δm,n, ∵ dx =

dρ

α
,

or
NmNn

α

∫ +∞

−∞
e−ρ

2
Hm(ρ)Hn(ρ) dρ = δm,n. (3.28)

We know that the orthonormal property of the Hermite polynomial functions is given

as ∫ +∞

−∞
e−ρ

2
Hm(ρ)Hn(ρ) dρ =

√
π 2n n! (3.29)

Substituting Eq. (3.29) in Eq. (3.28) gives

NmNn

α

√
π 2n n! = δm,n. (3.30)

If m = n, then NmNn = N2
n and δm,n = 1. Under such conditions Eq. (3.30) becomes

N2
n

α

√
π 2n n! = 1

or

Nn =

[
α√

π 2n n!

] 1
2

. (3.31)

The Eq. (3.31) gives the expression for the normalization constant of the wavefunction.
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3.4 Energy Eigen Functions un(ρ) and Probability Densi-

ties Pn(ρ)

Substituting Eq. (3.31) in Eq. (3.26) gives the energy eigen functions of the Linear

Harmonic Oscillator as

un(ρ) =

[
α√
π2nn!

] 1
2

e−ρ
2/2Hn(ρ) (3.32)

Here Hn(ρ) is the Hermite Polynomial function of degree n. The expressions for Hn(ρ)

for some values of n are given in the table 3.1.

Table 3.1: First few values of the Hermite Polynomials

Order n Hermite Polynomial Hn(ρ)

0 H0(ρ) = 1

1 H1(ρ) = 2ρ

2 H2(ρ) = 4ρ2 − 2

3 H3(ρ) = 8ρ3 − 12ρ

4 H4(ρ) = 16ρ4 − 48ρ2 + 12

5 H5(ρ) = 2ρ5 − 160ρ3 + 120ρ

The eigenfunctions un(ρ) of the LHO for different values of n are evaluated numerically

using the analytical expressions for the Hermite polynomial functions. Then the plots of

un(ρ) as function of ρ give the wavefunction profiles of the LHO for different quantum

states. From these the probability densities |u(ρ)|2 are also evaluated. The wavefunction

profiles so obtained for even-state wavefunctions (n = 0, 2, 4, · · · ) and their probability

densities are shown in Figs. (3.1) respectively. Similarly the wavefunction profiles for

odd-state wavefunctions (n = 1, 3, 5, · · · ) and their probability densities are shown in

Figs. (3.2) respectively.

From the profiles of the wave functions un(ρ), we find that for the nth eigen state, there

are n-nodes, that is, there are n finite values of ρ for which un(ρ) vanishes. Thus we

find greater the number of nodes that a wave function has, greater will be its energy.
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Figure 3.1: (a) The wavefunction profiles for the first three even eigen states namely
n = 0, n = 2 and n = 4 plotted as a function of ρ. It can be clearly seen that the
wavefunctions have n−nodes, that is they cross the ρ−axis n number of times. Thus
u0(ρ) has no node, u2(ρ) has 2 nodes and u4(ρ) has 4 nodes and (b) the probability

densities Pn(ρ) corresponding to these wavefunctions.
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Figure 3.2: (a) The wavefunction profiles for the first three odd eigen states namely
n = 1, n = 3 and n = 5 plotted as a function of ρ. Here also it can be seen that the
wavefunctions have n−nodes, that is they cross the ρ−axis n number of times. Thus
u1(ρ) has 1 node, u3(ρ) has 3 nodes and u3(ρ) has 3 nodes and (b) the probability

densities Pn(ρ) corresponding to these wavefunctions.
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Note

Greater the number of nodes that a wave function has, greater will be energy of

the particle.

3.5 Energy Eigen values

From Eq. (3.9) we have

λ =

(
2E

}ω

)
or

E =
1

2
λ }ωc. (3.33)

However from Eq. (3.23) we have

λ = 2n+ 1. (3.34)

Substituting Eq. (3.34) in Eq. (3.33) gives

E =
1

2
(2n+ 1)}ωc

Or, on rearranging it gives

En =

(
n+

1

2

)
}ωc. (3.35)

Equation(3.35) gives the expression for the energy levels of LHO for various quantum

states defined by n = 1, 2, 3, ...... etc., It tells that

• Quantization of Energy Levels: The energy levels of a LHO are quantized,(i.e)

they are discrete.

• Even Spacing of Energy Levels: The energy levels are evenly spaced,(i.e) the dif-

ference between any two consecutive quantum states is ∆E = }ω.

• Zero Point Energy: The energy of the LHO, even for its ground state, is not zero

but a finite non-zero value given by E0 =
1

2
}ωc. This energy is called as the

zero-point energy. The zero point energy is a characteristic feature of a Linear

Harmonic Oscillator and is not possessed by any other system.
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Reason for Zero Point Energy:

The reason for the arising of the zero point energy can be explained as due to the

Heisenberg’s uncertainty principle. In the ground state, the particle executing harmonic

motions is confined to a finite region of space due to the action of the potential V (x) =
1
2mω2

c x
2. Therefore by the principle of uncertainty (M p M x) ≥ }, as M x ' 0 the

particle cannot have a finite value of momentum or energy, that is M p −→ ∞. Hence

the momentum or energy cannot have a finite value, much less a zero value. Hence the

zero point energy will always be a non-zero value.

3.6 Probability Inside and Outside Classically Allowed Re-

gion

The wavefunction profile and the probability density for the tenth eigen state are shown

in Figs. 3.3(a) and (b) respectively. The quantum mechanical probability of finding

of the particle in a particular region P =
∫
u0(ρ)2dρ. Let ρ0 = αx0 be the maximum

amplitude of oscillation for a given energy of LHO. Then the amount of time it spends

between ρ and ρ + dρ is propotional to
1√

(ρ20 − ρ2)
. Thus the classical probability

density for finding the oscillator in the neighbourhood of ρ is propotional to
1√

(ρ20 − ρ2)
.

This means that at classical boundaries, the probability should tend to infinity at the

maxmimum ampulitude points (±ρ0). This is clearly seen in Fig. 3.3(b) for n = 10.

Quantum mechanically, the probability curve has n = 10 nodes and all these 10 nodes

lie in the classically allowed regions only. However we find a finite quantum probability

of finding the oscillator in the classically forbidden region. This can also be seen from

Fig. 3.3(b). Though the quantum probability behaves much differently because of

the wave nature of the partilce, a good agreement of the quantum probability and

the classical probablity curvs are observed. This agreement of classical and averaged

quantum probabilities holds good only for higher energies of Linear Harmonic Oscillator.

3.7 Ground State Probabality of Finding the Particle in

the Classical Limits

Quantum mechanically, the energy of an oscillating particle in the ground state is

E0 =
1

2
}ωc. (3.36)
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Figure 3.3: (a) The eigenfunction profile and (b) the probability density for tenth
eigne state of the LHO, n = 10
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If a is the amplitude, then the total energy of the particle according to classical mechanics

is given as

ε0 =
1

2
mω2

ca
2. (3.37)

Equating the Eqs. (3.36) and (3.37), we get

1

2
mω2

ca
2 =

1

2
}ωc

or a =

√
}

mωc
. (3.38)

The Eq. (3.38) gives the expression for the classical amplitude of the particle. Then the

probability of finding the particle in classical limits is

P =

∫ +a

−a
| u0(ρ) |2 dx (3.39)

If x −→ −a, then ρ −→ −αa, that is ρ −→ −
√
mω

}

√
}
mω

= −1,

∵ α =

√
mω

}
and a =

√
}
mω

.

Similarly if x −→ +a, then ρ −→ +1.

Hence

P =

∫ +1

−1
|u0(ρ)|2dρ

α

or

P =
2

α

∫ +1

0
|u0(ρ)|2dρ. (3.40)

We know that the wavefunction u0(ρ) is given as

u0 =

[
α√
π

] 1
2

e
−
(

ρ2

2

)
. (3.41)

Substituting Eqn. (3.41) in Eqn. (3.40), gives
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Figure 3.4: The classical (green online) and the quantum mechanical (red online)
probability densities for the LHO in ground state. It can be clearly seen that the
quantum probability density extends well beyond the classical limits into the classically

forbidden regions |ρ| > 1.0.

P =
α√
π

2

α

∫ +1

0
e−ρ

2
dρ

or

P =
2√
π

∫ +1

0
e−ρ

2
dρ. (3.42)

We know that

e−x =

{
1− x+

x2

2!
− x3

3!
+
x4

4!
+ · · ·

}
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Hence if we assume x = ρ2, then 3.42 becomes

P =
2√
π

∫ +1

0

{
1− ρ2 +

ρ4

2!
− ρ6

3!
+
ρ8

4!
− · · ·

}
dρ,

P =
2√
π

{
ρ− ρ3

3
+

ρ5

5× 2!
− ρ7

7× 3!
+

ρ9

9× 4!
− · · ·

}1

0

,

P =
2√
π

{
1− 1

3
+

1

5× 2!
− 1

7× 3!
+

1

9× 4!
− · · ·

}
. (3.43)

Evaluating the above Eqn. 3.43 the probability of finding the particle within the classical

limits is P = 0.843 or if expressed as a percentage, P = 84.3%. This means that the

probability of finding the particle beyond the classical limits well into the classically

forbidden region is not zero but is a finite value given as

P = (100− 84.3) %,

or

P = 15.7%. (3.44)

This is shown graphically in Fig. (3.4).
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