

 DEPARTMENT OF COMPUTER SCIENCE &IT

VB .NET

PREPARED BY

S. Benazir Butto

Assistant Professor

Department of CS&IT (SF-Women)

UNIT 1

THE .NET FRAMEWORK AND THE COMMON LANGUAGE RUNTIME:

.NET Framework (Pronounced dot net) is a software framework developed by Microsoft that

runs primarily on Microsoft windows.

VB. NET is only one component of a revolution in windows-the .NET framework.

 NET framework execute in a SOFTWARE environment. (As contrasted to HARDWARE

environment) known as Common Language Runtime, an application virtual machine that provides

services such as security memory management, and exception handling.

.NET framework is intended to be used by most new application created for Windows platform.

Microsoft also produces an INTEGRATED DEVELOPMENT ENVIRONMENT largely for. .NET

software called visual studio.

 At the base of the .NET framework in the common language runtime (CLR) The CLR provides

additional services including memory management, type safety, exception handling, garbage collection,

security and thread management.

 The .NET Framework class library is the second major part of the .NET Framework. The class

library hold’s on immense amount of prewritten code that all the application you create with VISUAL

BASIC, VISUAL C++, VISUAL C# and other Visual studio language are build on.

 All this assumes that you’re working on a machine that has the .NET Framework, and therefore the

CLR and the .NET Framework class library, installed. The code for all elements we use in a VB.NET

application –forms, buttons, menus, and all the rest-all comes from the class library.

 The CLR converts CIL (Common Intermediate Language) to native code.

 BUILDING VB.NET APPLICATIONS:

To build applications in VB.NET,we have to get some terminology under our belts,because the

.NETframework requires a new structure for applications.

i) Assemblies:

An assembly holds the intermediate language modules for your applications.When you create an

application in VB.NET and run it,VB.NET creates one or more assemblies,which are run by the CLR..

ii) Solutions and Projects:

When you created applications in Visual Basic 6.0,you created projects.Each project held the code and

data for an application,ActiveX control, or whatever else you wanted to build.If you wanted to combine

projects together,you create default a project group.

iii) File Extensions Used in VB.NET:

 .vb --- can be basic windows form,a code file,a module file for storing functions,a user control,a data

form.

 .xsd--- An XML schema provided to create typed datasets.

 .xml---An XML document file.

 .htm---An HTML document.

 .txt--- A text file.

 .xslt---An XSLT stylesheetfile,used to transform XMLdocuments and XML schemas.

 .css---A cascading stylesheet file.

 .rpt---A crystal Report.

 .bmp---A bitmap file.

 .js---A javascript file.

 .vbs—A VBScript file.

 .wsf---A Windows scripting file.

 .aspx---A Web form.

 .asp---An active server page.

 .asmx---A Web service class.

 .resx---A resource file used to store resource information.

iv) Debug and Release Versions:

In a debug of your program,Visual Basic stores a great deal of data needed to interface with the debugger

in your prigramwhen it runs,and this not only makes the corresponding assembly larger,but also slower.

When you create a new solution,Visual Basic creates it in debug mode,

 Select the configuration Manager item in the Build menu

And the click ok.

 Select the solutions you want to set the mode for by clicking it in the Solutions Explorer,and find its

Active Config property in the properties window.

 Select the Solutions you want to set the mode for by clicking it in the Solutions Explorer,and select the

properties item in the Project menu.

 Probably the easiest way to set the solution mode to release or debug is simply to use the drop-down list

box that appears in the Visual Basic.NET standard toolbar,at the top of the IDE.

THE VISUAL BASIC INTEGRATED DEVELOPMENT ENVIRONMENT

i) The Start Page: The start page to select from recent projects;bydefault,the get started item is selected in

the start page at upper left.You can also create the new project here by clicking the New project button.

ii) The Menu System: File->new->project.

Menu item to bring up the new project dialog box.

There are hundreads of menu items here,and many useful ones that will quickly become favorites,such as

file|new|project that you use to create a new project.

iii) Tool Bars: Tool bars provide a quick way to select many items,and although I personally usually stick

to using the menu system,there’s no doubt that tool bar buttons can be quicker.

For eg.

To save the fileyou are currently working on,you only need to click the diskette botton in the standard

tool bar,or the stacked diskette button to save all the files in the solution.

iv) The New Project Dialog Box: In addition to letting you select from all the possible types of projects

you can create in the Visual Basic,you can also set the name of the project,and its location; for windows

projects,the location is a folder on disk,

But for web projects you specify a server running IIS.

v) Graphic designers: You are actually looking at a Windows form designer,you can manipulate the

form,as well as add controls to it and so on.

There are several different types of graphical designers,including:

 Windows form designers.

 Web form designers.

 Component designers.

 XML designers.

v) Code Designers: let you edit the code for a component, and you can see a code designer.

You can use the tabs At the top center of the IDE to switch between graphical designers such as the tabs,

 Form1.vb which displays a graphical designer

 Form1.vb tab which displays the corresponding code designer.

vi) Intellisense: Listing all the possible options and even completing your typing for you

Intellisense is made up of a number of options, including:

 List Members---Lists the members of the object.

 Parameter info---Lists the arguments of the procedure calls.

 Quick Info---Displays information in tool tips as the mouse rests on elements in your code.

 Complete Word---Completes typed words.

 Automatic Brace Matching—Adds parentheses or braces as needed.

vii) The Tool Box :You can see these tabs,marked Data,Components,Window Forms and General,. The

Data,Components,Window Forms and General tabs appears when you’re Working with Windows form

in a Windows form designer.

viii) The Solution Explorer: To add new items, you can use the menu item in the project menu, such as

Window Form and Add User Control. TO add new empty modules and classes to project, you can use the

project/Add New Items menu item.

ix) The Properties Window: The properties window is divided into two columns of text, with the

properties on the left, and their setting on the right. The object you’re setting properties for appears in the

drop-down list box at the top of the Properties Window, and you can select from all the available objects

using that list box.

x) Component Tray: The component wasn’t visible at the run time-such as a timer control-the timer

would still appear on the form at design time. That’s changed in VB.NET. now, when you add

components that are invisible at run time, they’ll appear in a component tray.

xi) Server Explorer: To explore what’s going on in a server, and it’s a great tool to help make distant

servers feel less distant, because you can see everything you need in an easy graphical environment.

VISUAL BASIC STATEMENTS

 Keywords-Words reserved for Visual Basis’s use.

 Operators-Symbols used to perform operations, like +, which performs addition operations;-, which

performs subtraction operations; and so on.

 Variables-Symbolic names given to values stored in memory and declared with the dim keyword. For

example, if you’ve declared a variable named temperature as an Integer type, you can store integer values

like 72 or 83 in it.

 Literal values-Simple values, like 5 or “Hello”.

 Constants-The same as variables, except that constants are assigned a value that cannot than be altered.

 Expressions-Combinations of terms and/or keywords that yield a value. For example, if the variable

temperature holds the value 72, then the expression temperature +3 yields the value 75.

ALL ABOUT STATEMENT SYNTAX

Each statement has its own syntax, and there are a few conventions and terms you should be aware of

before getting started:

In the formal definition of each statement, you use brackets, [and , for optional items, and curly braces, {

and }, to indicate that you select one of the enclosed items, like this for the Dim statement:

[<attrlist>] [{ Public | Protected | Friend | Protected Friend | Private | Static }] [Shared] [Shadows] [

ReadOnly] Dim [WithEvents] name [(boundlist)] [As [New] type] [= initexpr]

 attrlist – A list of attributes that apply to the variables you’re declaring in the statement.

 Public – Gives variables public access, which means there are no restrictions on their accessibility.

 Protected- Gives variables protected access, which means they are accessible only from within their own

class or from a class derived from that class.

 friend— Gives variables friend access, which means they are accessible from within the program that

contains their declaration, as well as from anywhere else in the same assembly.

 Protected Friend— Gives variables both protected and friend access. which means they can be used by

code in the sans assembly, as well as by code in derived classes.

 Private— Gives variable private access, which means they are accessible only from within their

declaration context (usually a class) ,including any nested procedures.

 Static— Makes variables static, which mesas retain their values, even after the procedure in which

they're declared ends.

 Shared—Declares a shared variable, which means it is not associated with a specific instance of a class

or structure, but can be shared across many instances.

 Shadows—Makes this variable a shadow of an identically named programming element in a base class.

A shadowed element is unavailable in the derived class that shadows it.

 readOnly--Means this variable only can be read and not written. This can be useful for creating constant

members of reference types, such as an object variable with preset data members.

 WithEvents—Specifies that this variable is used to respond to events caused by the instance that was

assigned to the variable. Note that you cannot specify both WithEvents and New in the same variable

declaration.

 name—The name of the variable. You separate multiple variables by commas. If you specify multiple

variables. each variable is declared of the data type given in the first As clause encountered after its name

part.

 boundlist- Used to declare arrays; gives the upper bounds of the dimensions of an any variable. Multiple

upper bounds are separated by commas.

 New—Means you want to create a new object immediately.

 type—The data tome of the variable.

 initexpr—An initialization expression that is evaluated and the result is assigned to the variable when it

is created,.

DECLARING VARIABLES: Declaring variable which is used to store some data in program.

 [<attrlist>] [{ Public | Protected | Friend | Protected Friend | Private | Static }] [Shared] [Shadows

] [ReadOnly] Dim [WithEvents] name[(boundlist)] [As [New] type] [= initexpr]

 attrlist – A list of attributes that apply to the variables you’re declaring in the statement.

 Public – Gives variables public access, which means there are no restrictions on their accessibility.

 Protected- Gives variables protected access, which means they are accessible only from within their own

class or from a class derived from that class.

 friend— Gives variables friend access, which means they are accessible from within the program that

contains their declaration, as well as from anywhere else in the same assembly.

 Protected Friend— Gives variables both protected and friend access. which means they can be used by

code in the sans assembly, as well as by code in derived classes.

 Private— Gives variable private access, which means they are accessible only from within their

declaration context (usually a class) ,including any nested procedures.

 Static— Makes variables static, which mesas retain their values, even after the procedure in which

they're declared ends.

 Shared—Declares a shared variable, which means it is not associated with a specific instance of a class

or structure, but can be shared across many instances.

 Shadows—Makes this variable a shadow of an identically named programming element in a base class.

A shadowed element is unavailable in the derived class that shadows it.

 readOnly--Means this variable only can be read and not written. This can be useful for creating constant

members of reference types, such as an object variable with preset data members.

 WithEvents—Specifies that this variable is used to respond to events caused by the instance that was

assigned to the variable. Note that you cannot specify both WithEvents and New in the same variable

declaration.

 name—The name of the variable. You separate multiple variables by commas. If you specify multiple

variables. each variable is declared of the data type given in the first As clause encountered after its name

part.

 boundlist- Used to declare arrays; gives the upper bounds of the dimensions of an any variable. Multiple

upper bounds are separated by commas.

 New—Means you want to create a new object immediately.

 type—The data tome of the variable.

 initexpr—An initialization expression that is evaluated and the result is assigned to the variable when it

is created,.

Each attribute in the attrlist list must use this syntax:

<attrname[({attrargs | attrinit})]>

Here are the parts of the attrlist List:

 • attrname- Name of the attribute.

• attrargs -List of arguments for this attribute. Separate multiple arguments with commas

• attrinit—List of field or property initializers for this attribute.

Dim EmployeeID As Integer = 1

Dim Employee As String =” Slob Owen”

Dim EmployeeAddress As String

Default values:

• 0 for all numeric types (including Byte).

 • Binary 0 for Char.

• Nothing for all reference types (including Object. String. and all arrays). Nothing means there is no

object associated with the reference.

 • False for Boolean.

• 12:00 AM of January, 1 of the year 1 for Date.

VARIABLE PREFIXES

Ddata type Prefix

Bboolean Bln

Bbyte Byt

Ccollection object Col

Ddate(Time) Dtm

Ddouble Dbl

Eerror Err

Iiinteger Int

Llong Lng

oObject Obj

SSingle Sng

String Str

User-defined type Udt

DECLARING CONSTANT: class, structure, procedure, or block level to declare constant for

use in place of literal values.

[<attrlist>] [{ Public | Protected | Friend | Protected Friend | Private }] [Shadows]const name[

AS type] = initexpr

 Here are the various parts of this statement:

 attrlist—a list of attributes that apply to the constant you’re declaring in this statement you separate

multiple attribute with commas.

 Public—gives constant public access, which means there are no restriction on their accessibility.

 Protected—gives constant protected access, which means they are accessible only from within their own

class or from a class derived from that class.

 Friends—gives constant friend access, which means they are accessible from within the program that

contain their declaration, as well as anywhere else in the same assembly.

 protected friend—Gives constants both protected and friend access, which means they can be used by

code in the same assembly, as well as by code in derived classes.

 Private—Gives constants private access, which means they are accessible only from within their

declaration context (usually a class), including any nested procedures.

 Shadows—Makes this constant a shadow of an identically named programming element in a base class.

A shadowed element is unavailable in the derived class that shadows it.

 name—The name of the constant. You can declare as many constants as you like in the same declaration

statement, specifying the name and initexpr parts for each one.

 type—The data type of the constant.

 initexpr—An initialization expression. Can consist of a literal, another constant, a member of an

enumeration, or any combination of literals, constants, and enumeration members.

 Each attribute in the attrlist must use this syntax:

Each attribute in the attrlist list must use this syntax:

•attrname—Name of the attribute.

 • attrargs—List of arguments for this attribute. Separate multiple arguments with commas.

<attrname [({ attrargs | attrint })]>

 •attrinit—List of field or property initializers for this attribute. Separate multiple arguments with

commas.

Imports System.Console

Module Moduiel

 Sub Main()

 Const pi = 3.14159

 Radius. Area As Single

 Radius = 1

 Area = Pi * Radius *Radius

 WriteLine(“Area = “ & Str(Area))

 End Sub

End Module

DATA TYPES IN VB.Net

Visual Basic .NET (VB .NET) lets you get right to the basics without having to wade through translators.

The following table shows you the data types VB .NET uses, as well as their CLR structure, storage size,

and value ranges. Use the info for good, not evil!

Visual Basic Type
Common Language Runtime Type

Structure
Storage Size

Boolean System.Boolean 2 bytes

Byte System.Byte 1 byte

Char System.Char 2 bytes

Date System.DateTime 8 bytes

Decimal System.Decimal 16 bytes

Double (double- precision

floating-point)
System.Double 8 bytes

Integer System.Int32 4 bytes

Long (long integer) System.Int64 8 bytes

Object System.Object (class) 4 bytes

Short System.Int16 2 bytes

Single (single-precision floating-

point)
System.Single 4 bytes

String (variable-length) System.String (class)
Depends on implementing

platform

User-Defined Type (structure) (inherits from System.ValueType)
Sum of the sizes of its

members

ARRAYS:

An array stores a fixed-size sequential collection of elements of the same type.

An array is used to store a collection of data, but it is often more useful to think of an array as a

collection of variables of the same type.

All arrays consist of contiguous memory locations. The lowest address corresponds to the first

element and the highest address to the last element.

Creating Arrays in VB.Net

To declare an array in VB.Net, you use the Dim statement. For example,

Dim intData(30) ' an array of 31 elements

Dim strData(20) As String ' an array of 21 strings

Dim twoDarray(10, 20) As Integer 'a two dimensional array of integers

Dim ranges(10, 100) 'a two dimensional array

Declaring Values in Arrays in VB.Net

Dim intData() As Integer = {12, 16, 20, 24, 28, 32}

Dim names() As String = {"Karthik", "Sandhya", "Shivangi", "Ashwitha", "Somnath"}

Dim miscData() As Object = {"Hello World", 12d, 16ui, "A"c}

Example:

Module arrayApl

 Sub Main()

 Dim n(10) As Integer ' n is an array of 11 integers '

 Dim i, j As Integer

 ' initialize elements of array n '

 For i = 0 To 10

 n(i) = i + 100 ' set element at location i to i + 100

 Next i

 ' output each array element's value '

 For j = 0 To 10

 Console.WriteLine("Element({0}) = {1}", j, n(j))

 Next j

 Console.ReadKey()

 End Sub

End Module

Dynamic Arrays

Dynamic arrays are arrays that can be dimensioned and re-dimensioned as par the need of the

program.

You can declare a dynamic array using the ReDim statement.

Syntax : ReDim [Preserve] arrayname(subscripts)

Where,

 The Preserve keyword helps to preserve the data in an existing array, when you resize it.

 arrayname is the name of the array to re-dimension.

 subscripts specifies the new dimension.

Module arrayApl

 Sub Main()

 Dim marks() As Integer

 ReDim marks(2)

 marks(0) = 85

 marks(1) = 75

 marks(2) = 90

 ReDim Preserve marks(10)

 marks(3) = 80

 marks(4) = 76

 marks(5) = 92

 marks(6) = 99

 marks(7) = 79

 marks(8) = 75

 For i = 0 To 10

 Console.WriteLine(i & vbTab & marks(i))

 Next i

 Console.ReadKey()

 End Sub

End Module

HANDLING STRING

Strings are supported by the .NET String class in Visual Basic. You declare a string this way:

Dim strText As String

As with other types of variables, you can also initialize a string when you declare it, like this:

 Dim myString As String = "Welcome to Visual Basic"

For example, you use Left, Mid, and Right to divide a string into substrings, you find the length of a

string with Len, and so on.

.NET framework functions are built into the String class that VB .NET uses.

For example, the Visual Basic UCase function will convert strings to upper case, and so will the String

class's ToUpper method.

Example:

Option Strict On

Module Module1

 Sub Main()

 Dim strText1 As String = "welcome to visual basic"

 Dim strText2 As String

 Dim strText3 As String

 strText2 = UCase(strText1)

 strText3 = strText1.ToUpper

 System.Console.WriteLine(strText2)

 System.Console.WriteLine(strText3)

 End Sub

End Module

To do this Use this

Concatenate two strings &, +, String.Concat, String.Join

Compare two strings StrComp, String.Compare, String.Equals, String.CompareTo

Convert strings StrConv, CStr, String. ToString

Copying strings =, String.Copy

Convert to lowercase or

uppercase

Format, Lcase, Ucase, String.Format, String. ToUpper, String. ToLower

Convert to and from numbers Str, Val.Format, String.Format

Create string of a repeating

character

Space, String, String.String

Create an array of strings from

one string

String.Split

Find length of a string Len, String.Length

Format a string Format, String.Format

Get a substring Mid, String.SubString

Insert a substring String.Insert

Justify a string with padding LSet, Rset, String.PadLeft, String.PadRight

Manipulate strings InStr, Left, LTrim, Mid, Right, RTrim, Trim, String.Trim, String.TrimEnd,

String.TrimStart

Remove text Mid, String.Remove

Replace text Mid, String.Replace

Set string comparison rules Option Compare

Search strings InStr, String.Chars, String.IndexOf, String.IndexOfAny,

To do this Use this

String.LastIndexOf, String.LastIndexOf Any

FIXED-LENGTH STRINGS

VB6.FixedLengthString,—that supports fixed-length strings; for example, this declaration in

VB6, which declares a string of 1000 characters:

Dim strString1 As String * 1000 (OR)

Dim strString1 As New VB6.FixedLengthString(1000)

OPERATORS:

An operator is a symbol that tells the compiler to perform specific mathematical or logical

manipulations. VB.Net is rich in built-in operators and provides following types of commonly used

operators:

 Arithmetic Operators, Comparison Operators, Logical/Bitwise Operators, Assignment Operators,

Miscellaneous Operators

Arithmetic Operators

Assume variable A holds 2 and variable B holds 7, then:

Operator Description

^ Raises one operand to the power of another

+ Adds two operands

- Subtracts second operand from the first

* Multiplies both operands

/ Divides one operand by another and returns a floating point result

\ Divides one operand by another and returns an integer result

MOD Modulus Operator and remainder of after an integer division

Comparison Operators

Assume variable A holds 10 and variable B holds 20, then:

Operator Description

= Checks if the values of two operands are equal or not; if yes, then condition becomes true.

<> Checks if the values of two operands are equal or not; if values are not equal, then condition

becomes true.

> Checks if the value of left operand is greater than the value of right operand; if yes, then

condition becomes true.

< Checks if the value of left operand is less than the value of right operand; if yes, then

condition becomes true.

>= Checks if the value of left operand is greater than or equal to the value of right operand; if

yes, then condition becomes true.

<= Checks if the value of left operand is less than or equal to the value of right operand; if yes,

then condition becomes true.

 Is Operator - It compares two object reference variables efer to the same object without performing value

comparisons. If object1 and object2 both refer to the exact same object instance, result is True;

otherwise, result is False.

 IsNot Operator - It also compares two object reference variables and determines if two object references

refer to different objects. If object1 and object2 both refer to the exact same object instance, result is

False; otherwise, result is True.

 Like Operator - It compares a string against a pattern.

Logical/Bitwise Operators

Assume variable A holds Boolean value True and variable B holds Boolean value False, then:

Operator Description

And If both the operands are true, then condition becomes true.

Or If any of the two operands is true, then condition becomes true.

Not . If a condition is true, then Logical NOT operator will make false.

Xor It returns True if both expressions are True or both expressions are False; otherwise

it returns False.

AndAlso It works only on Boolean data. It performs short-circuiting.

OrElse It works only on Boolean data. It performs short-circuiting.

IsFalse It determines whether an expression is False.

IsTrue It determines whether an expression is True.

Assignment Operators

There are following assignment operators supported by VB.Net:

Operator Description

= Simple assignment operator, Assigns values from right side operands to left side operand

+= It adds right operand to the left operand and assigns the result to left operand

-= It subtracts right operand from the left operand and assigns the result to left operand

*= It multiplies right operand with the left operand and assigns the result to left operand

/= It divides left operand with the right operand and assigns the result to left operand (floating

point division)

\= It divides left operand with the right operand and assigns the result to left operand (Integer

division)

^= Exponentiation and assignment operator. It raises the left operand to the power of the right

operand and assigns the result to left operand.

<<= Left shift AND assignment operator

>>= Right shift AND assignment operator

&= Concatenates a String expression to a String variable or property and assigns the result to the

variable or property.

CONTROL STRUCTURES:

DECISION MAKING:

Decision making structures require that the programmer specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the condition is

determined to be true, and optionally, other statements to be executed if the condition is determined to be

false.

i) SIMPLE IF STMT:

It is the simplest form of control statement, frequently used in decision making and changing the control

flow of the program execution.

Syntax: If condition Then

 [Statement(s)]

 End If

Example of an If-Then statement is:

If (a <= 20) Then

c= c+1

End If

Example:

Module decisions

 Sub Main()

 Dim a As Integer = 10

 If (a < 20) Then

 Console.WriteLine("a is less than 20")

 End If

 Console.WriteLine("value of a is : {0}", a)

 Console.ReadLine()

 End Sub

End Module

ii) IF …..ELSE STMT

An If statement can be followed by an optional Else statement, which executes when the Boolean

expression is false.

Syntax: If(boolean_expression)Then

 'statement(s) will execute if the Boolean expression is true

 Else

 'statement(s) will execute if the Boolean expression is false

 End If

Example:

Module decisions

 Sub Main()

 'local variable definition '

 Dim a As Integer = 100

 ' check the boolean condition using if statement

 If (a < 20) Then

 ' if condition is true then print the following

 Console.WriteLine("a is less than 20")

 Else

 ' if condition is false then print the following

 Console.WriteLine("a is not less than 20")

 End If

 Console.WriteLine("value of a is : {0}", a)

 Console.ReadLine()

 End Sub

End Module

iii) THE IF...ELSE IF...ELSE STATEMENT

An If statement can be followed by an optional Else if...Else statement, which is very useful to test

various conditions using single If...Else If statement.

When using If... Else If... Else statements, there are few points to keep in mind.

 An If can have zero or one Else's and it must come after an Else If's.

 An If can have zero to many Else If's and they must come before the Else.

 Once an Else if succeeds, none of the remaining Else If's or Else's will be tested.

Syntax: If(boolean_expression 1)Then

 ' Executes when the boolean expression 1 is true

 ElseIf(boolean_expression 2)Then

 ' Executes when the boolean expression 2 is true

 ElseIf(boolean_expression 3)Then

 ' Executes when the boolean expression 3 is true

 Else

 ' executes when the none of the above condition is true

 End If

Example:

Module decisions

 Sub Main()

 Dim a As Integer = 100

 If (a = 10) Then

 Console.WriteLine("Value of a is 10") '

 ElseIf (a = 20) Then

 Console.WriteLine("Value of a is 20") '

 ElseIf (a = 30) Then

 Console.WriteLine("Value of a is 30")

 Else

 Console.WriteLine("None of the values is matching")

 End If

 Console.WriteLine("Exact value of a is: {0}", a)

 Console.ReadLine()

 End Sub

End Module

iv) SELECT CASE

A Select Case statement allows a variable to be tested for equality against a list of values. Each value is

called a case, and the variable being switched on is checked for each select case.

Syntax:

 Select [Case] expression

 [Case expressionlist

 [statements]]

 [Case Else

 [elsestatements]]

 End Select

expression: is an expression that must evaluate to any of the elementary data type in VB.Net, i.e.,

Boolean, Byte, Char, Date, Double, Decimal, Integer, Long, Object, SByte, Short, Single, String,

UInteger, ULong, and UShort.

 expressionlist: List of expression clauses representing match values for expression. Multiple expression

clauses are separated by commas.

 statements: statements following Case that run if the select expression matches any clause in

expressionlist.

 elsestatements: statements following Case Else that run if the select expression does not match any

clause in the expressionlist of any of the Case statements.

Example:

Module decisions

 Sub Main()

 Dim grade As Char

 grade = "B"

 Select grade

 Case "A"

 Console.WriteLine("Excellent!")

 Case "B", "C"

 Console.WriteLine("Well done")

 Case "D"

 Console.WriteLine("You passed")

 Case "F"

 Console.WriteLine("Better try again")

 Case Else

 Console.WriteLine("Invalid grade")

 End Select

 Console.WriteLine("Your grade is {0}", grade)

 Console.ReadLine()

 End Sub

End Module

LOOPING STATEMENT

A loop statement allows us to execute a statement or group of statements multiple times and following is

the general form of a loop statement in most of the programming languages:

LOOP CONTROL STATEMENTS:

Loop control statements change execution from its normal sequence. When execution leaves a scope, all

automatic objects that were created in that scope are destroyed.

i) DO LOOP:

It repeats the enclosed block of statements while a Boolean condition is True or until the condition

becomes True. It could be terminated at any time with the Exit Do statement.

Syntax: Do { While | Until } condition

 [statements]

 [Continue Do]

 [statements]

 [Exit Do]

 [statements]

 Loop

 -or-

 Do

 [statements]

 [Continue Do]

 [statements]

 [Exit Do]

 [statements]

 Loop { While | Until } condition

Example:

Module loops

 Sub Main()

 ' local variable definition

 Dim a As Integer = 10

 'do loop execution

 Do

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 Loop While (a < 20)

 Console.ReadLine()

 End Sub

End Module

ii) FOR LOOP:

It repeats a group of statements a specified number of times and a loop index counts the number of loop

iterations as the loop executes.

Syntax: For counter [As datatype] = start To end [Step step]

 [statements]

 [Continue For]

 [statements]

 [Exit For]

 [statements]

 Next [counter]

Example

Module loops

 Sub Main()

 Dim a As Byte

 For a = 10 To 20

 Console.WriteLine("value of a: {0}", a)

 Next

 Console.ReadLine()

 End Sub

End Module

iii) FOR EACH ….NEXT LOOP

It repeats a group of statements for each element in a collection. This loop is used for accessing and

manipulating all elements in an array or a VB.Net collection.

Syntax: For Each element [As datatype] In group

 [statements]

 [Continue For]

 [statements]

 [Exit For]

 [statements]

 Next [element]

Example

Module loops

 Sub Main()

 Dim anArray() As Integer = {1, 3, 5, 7, 9}

 Dim arrayItem As Integer

 For Each arrayItem In anArray

 Console.WriteLine(arrayItem)

 Next

 Console.ReadLine()

 End Sub

End Module

iv) WHILE LOOP:

It executes a series of statements as long as a given condition is True.

Syntax: While condition

 [statements]

 [Continue While]

 [statements]

 [Exit While]

 [statements]

 End While

Example

Module loops

 Sub Main()

 Dim a As Integer = 10

 While a < 20

 Console.WriteLine("value of a: {0}", a)

 a = a + 1

 End While

 Console.ReadLine()

 End Sub

End Module

v) WITH STATEMENT

It is not exactly a looping construct. It executes a series of statements that repeatedly refers to a single

object or structure.

Syntax: With object

 [statements]

 End With

Example

Module loops

 Public Class Book

 Public Property Name As String

 Public Property Author As String

 Public Property Subject As String

 End Class

 Sub Main()

 Dim aBook As New Book

 With aBook

 .Name = "VB.Net Programming"

 .Author = "Zara Ali"

 .Subject = "Information Technology"

 End With

 With aBook

 Console.WriteLine(.Name)

 Console.WriteLine(.Author)

 Console.WriteLine(.Subject)

 End With

 Console.ReadLine()

 End Sub

End Module

UNIT – 2

DEFINING SUB PROCEDURES:

The Sub statement is used to declare the name, parameter and the body of a sub procedure.

Syntax: [Modifiers] Sub SubName [(ParameterList)]

 [Statements]

End Sub

 Modifiers: specify the access level of the procedure; possible values are: Public, Private,

Protected, Friend, Protected Friend and information regarding overloading, overriding, sharing,

and shadowing.

 SubName: indicates the name of the Sub

 ParameterList: specifies the list of the parameters

Example : Refer Note

DEFINING FUNCTIONS:

The Function statement is used to declare the name, parameter and the body of a function.

Syntax : [Modifiers] Function FunctionName [(ParameterList)] As ReturnType

 [Statements]

End Function

 Modifiers: specify the access level of the function; possible values are: Public, Private,

Protected, Friend, Protected Friend and information regarding overloading, overriding, sharing,

and shadowing.

 FunctionName: indicates the name of the function

 ParameterList: specifies the list of the parameters

 ReturnType: specifies the data type of the variable the function returns

Example: Refer Note

UNDERSTANDING SCOPE:

The scope of a variable or constant is the set of all code that can refer to it without

qualifying its name. A variable's scope is determined by where the variable is declared.

Block Scope: an element declared within a block can be used only within that block.

Procedure Scope: An element declared within a procedure is not available outside that procedure, and

only

the procedure that contains the declaration can use it. Elements at this level are also

called local elements, and you declare them with the Dim or Static statement.

Module Scope: When you make a declaration at the module level, the accessibility you choose

determines the scope. The namespace that contains the module, class, or structure also

affects the scope.

Namespace Scope: If you declare an element at module level using the Friend or Public statement, it

becomes available to all procedures throughout the entire namespace in which it is

declared. Note that an element accessible in a namespace is also accessible from inside

any namespace nested inside that namespace.

Example: Refer Note

EXCEPTION HANDLING:

i) Structured Exception: Structured exception handling is based on a particular statement, the

Try...Catch...Finally statement, which is divided into a Try block, optional Catch

blocks, and an optional Finally block.

The Try block contains code where exceptions

can occur,

The Catch block contains code to handle the exceptions that occur. If an

exception occurs in the Try block, the code throws the exception—actually an object

based on the Visual Basic Exception class—so it can be caught and handled by the

appropriate Catch statement. After the rest of the statement finishes, execution is

always passed to the Finally block, if there is one

Syntax and Example Refer Note

ii) Unstructured Exception:It revolves around the On Error GoTo statement

The On Error GoTo statement enables exception handling and specifies the location of

the exception-handling code within a procedure.

Syntax:

On Error { GoTo [line | 0 | -1] | Resume Next }

GoTo line: Enables the exception-handling code that starts at the line specified in the required line

argument.

GoTo 0: Disables enabled exception handler in the current procedure and resets it to Nothing.

GoTo -1:Same as GoTo 0.

Resume Next: Specifies that when an exception occurs, execution skips over the statement that caused

the problem and goes to the statement immediately following. Execution continues from that point

Example: Refer Note

CREATING SUBPROCEDURES: Declare Sub procedures with the Sub statement:

Syntax:

[<attrlist>] [{ Overloads | Overrides | Overridable | NotOverridable MustOverride | Shadows

|Shared }][{ Public | Protected | Friend | Protected Friend | Private }]

Sub name [(arglist)]

 [statements]

 [Exit Sub]

 [statements]

End Sub

Here are the parts of this statement:

attrlist-List of attributes for this procedure. You separate multiple attributes with commas.

Overloads-Specifies that this Sub procedure overloads one (or more) procedures defined with the

same name in a base class.

Overrides-Specifies that this Sub procedure overrides a procedure with the same name in a base class.

Note that the number and data types of the arguments must match those of the procedure in the base

class.

Overridable-Specifies that this Sub procedure can be overridden by a procedure with the same name

in a derived class.

NotOverridable-Specifies that this Sub procedure may not be overridden in a derived class.

MustOverride-Specifies that this Sub procedure is not implemented. Instead,this procedure must be

implemented in a derived class. If it is not, that class will not be creatable.

Shadows-Makes this Sub procedure a shadow of an identically named programming element in a base

class. A shadowed element is unavailable in the derived class that shadows it.

Shared-Specifies that this Sub procedure is a shared procedure. As a shared procedure, it is not

associated with a specific instance of a class or structure, and you can call it by qualifying it either

with the class or structure name, or with the variable name of a specific instance of the class or

structure.

Public-Procedures declared Public have public access. There are no restrictions on the accessibility of

public procedures.

Protected-Procedures declared Protected have protected access. They are accessible only from within

their own class or from a derived class.

Protected Friend-Procedures declared Protected Friend have both protected and friend accessibility.

They can be used by code in the same assembly, as well as by code in derived classes.

Private-Procedures declared Private have private access. They are accessible only within their

declaration context, including from any nested procedures.

name-Name of the Sub procedure.

arglist-List of expressions (which can be single variables or simple values) representing arguments

that are passed to the Sub procedure when it is called.

statements-The block of statements to be executed within the Sub procedure.

Each argument in the arglist part has the following syntax and parts:

[<attrlist>] [Optional] [{ ByVal | ByRef }] [ParamArray] argn

[As argtype] [= defaultvalue]

Here are the parts of the arglist:

attrlist-List of attributes that apply to this argument. Multiple attributes are separated by commas.

Optional-Specifies that this argument is not required when the procedure is called.

ByVal-Specifies passing by value. In this case, the procedure cannot replace or reassign the

underlying variable element in the calling code (unless the argument is a reference type). ByVal is the

default in Visual Basic.

ByRef-Specifies passing by reference. In this case, the procedure can modify the underlying variable

in the calling code the same way the calling code itself can.

ParamArray-Used as the last argument in arglist to indicate that the final argument is an optional

array of elements of the specified type. The ParamArray keyword allows you to pass an arbitrary

number of arguments to the procedure. A ParamArray argument is always passed ByVal.

argname-Name of the variable representing the argument.

argtype-This part is optional unless Option Strict is set to On, and holds the data type of the argument

passed to the procedure. Can be Boolean, Byte, Char, Date, Decimal, Double, Integer, Long, Object,

Short, Single, or String; or the name of an enumeration, structure, class, or interface.

defaultvalue-Required for Optional arguments. Any constant or constantexpression that evaluates to

the data type of the argument. Note that if the type is Object, or a class, interface, array, or structure,

the default value can be only Nothing.

Each attribute in the attrlist part has the following syntax and parts:

<attrname [({ attrargs | attrinit })]>

Here are the parts of attrlist:

attrname-Name of the attribute.

attrargs-List of positional arguments for this attribute. Multiple arguments are

separated by commas.

attrinit-List of field or property initializers for this attribute. Multiple initializers

are separated by commas.

CREATING FUNCTIONS:

Syntax:

[<attrlist>] [{ Overloads | Overrides | Overridable | NotOverridable MustOverride | Shadows |

Shared }][{ Public | Protected | Friend | Protected Friend | Private }] Function name[(arglist)] [As

type]

[statements]

[Exit Function]

[statements]

End Function

WINDOWS FORM APPLICATIONS

Microsoft Visual Studio - File → New Project → Windows Forms Applications

Visual Basic Form is the container for all the controls that make up the user interface.

Visual Studio creates a default form for you when you create a Windows Forms Application.

Every form will have title bar on which the form's caption is displayed and there will be buttons to

close, maximize and minimize the form

Properties:

Properties Description

CancelButton The button that's automatically activated when you hit the Esc key.

Usually, the Cancel button on a form is set as CancelButton for a form.

BackColor Sets the form background color.

BorderStyle The BorderStyle property determines the style of the form's border and

the appearance of the form −

 None − Borderless window that can't be resized.

 Fixed3D − Window with a visible border, "raised" relative to the

main area. In this case, windows can't be resized.

 SizableToolWindow − Same as the FixedToolWindow but

resizable. In addition, its caption font is smaller than the usual.

Enabled If True, allows the form to respond to mouse and keyboard events; if

False, disables form.

Font This property specify font type, style, size

MinimizeBox By default, this property is True and you can set it to False to hide the

Minimize button on the title bar.

MaximizeBox By default, this property is True and you can set it to False to hide the

Maximize button on the title bar.

MinimumSize This specifies the minimum height and width of the window you can

minimize.

MaximumSize This specifies the maximum height and width of the window you

maximize.

Name This is the actual name of the form.

Text The text, which will appear at the title bar of the form.

Top, Left These two properties set or return the coordinates of the form's top-left

corner in pixels.

TopMost This property is a True/False value that lets you specify whether the form

will remain on top of all other forms in your application. Its default

property is False.

Width This is the width of the form in pixel.

Methods

Method Name & Description

Activate:Activates the form and gives it focus.

ActivateMdiChild:Activates the MDI child of a form.

AddOwnedForm:Adds an owned form to this form.

BringToFront:Brings the control to the front of the z-order.

CenterToParent:Centers the position of the form within the bounds of the parent form.

CenterToScreen:Centers the form on the current screen.

Close:Closes the form.

Contains:Retrieves a value indicating whether the specified control is a child of the control.

Focus:Sets input focus to the control.

Hide:Conceals the control from the user.

Refresh:Forces the control to invalidate its client area and immediately redraw itself and any

child controls.

Show:Displays the control to the user.

ShowDialog:Shows the form as a modal dialog box.

Events:

Event Description

Activated Occurs when the form is activated in code or by the user.

Click Occurs when the form is clicked.

Closed Occurs before the form is closed.

Closing Occurs when the form is closing.

DoubleClick Occurs when the form control is double-clicked.

DragDrop Occurs when a drag-and-drop operation is completed.

Enter Occurs when the form is entered.

KeyDown Occurs when a key is pressed while the form has focus.

KeyPress Occurs when a key is pressed while the form has focus.

KeyUp Occurs when a key is released while the form has focus.

MouseDown Occurs when the mouse pointer is over the form and a mouse button is

pressed.

MouseEnter Occurs when the mouse pointer enters the form.

MouseHover Occurs when the mouse pointer rests on the form.

MouseLeave Occurs when the mouse pointer leaves the form.

MouseMove Occurs when the mouse pointer is moved over the form.

MouseUp Occurs when the mouse pointer is over the form and a mouse button is

released.

MouseWheel Occurs when the mouse wheel moves while the control has focus.

Example: Write any Program using Windows Application

CREATING WINDOWS APPLICATIONS:

WindowsApp.vbproj: AVisualBasicproject.

AssemblyInfo.vb: General Information about an assembly, including version information.

Form1.vb: A form's code file.

Form1.resx.NET: An XML-based resource template.

WindowsApp.vbproj.user: Stores project user options.

WindowsApp.sln : The solution file, storing the solution's configuration.

WindowsApp.suo: Stores solution user options.

bin: Directory for binary executables.

obj:Directory for debugging binaries.

ADDING CONTROLS TO THE FORM

The Toolbox can be found on the left of the screen. In the picture below, you can see the toolbox icon

next to Form1

To display all the tools, click on the Toolbox tab.

THE MSGBOX () FUNCTION

The objective of MsgBox is to produce a pop-up message box and prompt the user to click on a

command button

Syntax : yourMsg=MsgBox(Prompt, Style Value, Title)

The first argument, Prompt, will display the message in the message box. The Style Value will

determine what type of command buttons appear on the message box,

Table 12.1: Style Values

Style Value Named Constant Buttons Displayed

0 vbOkOnly Ok button

1 vbOkCancel Ok and Cancel buttons

2 vbAbortRetryIgnore Abort, Retry and Ignore buttons.

3 vbYesNoCancel Yes, No and Cancel buttons

4 vbYesNo Yes and No buttons

5 vbRetryCancel Retry and Cancel buttons

yourMsg=MsgBox("Click OK to Proceed", 1, "Startup Menu") and

yourMsg=Msg("Click OK to Proceed". vbOkCancel,"Startup Menu") are the same.

Table 12.2 : Return Values and Command Buttons

Value Named Constant Button Clicked

1 vbOk Ok button

2 vbCancel Cancel button

3 vbAbort Abort button

4 vbRetry Retry button

5 vbIgnore Ignore button

6 vbYes Yes button

7 vbNo No button

Table 12.3 Types of Icons

Value Named Constant Icon

16 vbCritical

3 vbQuestion

48 vbExclamation

64 vbInformation

 Example: Refer Note

MESSAGEBOX.SHOW METHOD

The .NET framework's MessageBox class's Show method to display message boxes. This method has

many overloaded forms; here's one of them:

Syntax

Overloads Public Shared Function Show(ByVal text As String, ByVal caption As String,

ByVal buttons As MessageBoxButtons, ByVal icon As MessageBoxIcon, ByVal defaultButton As

MessageBoxDefaultButton, ByVal options As MessageBoxOptions)As DialogResult

Text: The text to display in the message box.

Caption: The text to display in the title bar of the message box.

Buttons: One of the MessageBoxButtons enumeration values that specifies which buttons to display in

the message box.

Icon: One of the MessageBoxIcon enumeration values that specifies which icon to display in the

message box.

defaultButton: One of the MessageBoxDefaultButton enumeration values that specifies which is the

default button for the message box.

options: One of the MessageBoxOptions enumeration values that specifies which display and

association options will be used for the message box.

Here are the MessageBoxButtons enumeration values:

AbortRetryIgnore— The message box will show Abort, Retry, and Ignore buttons.

OK— The message box will show an OK button.

OKCancel— The message box will show OK and Cancel buttons.

RetryCancel— The message box will show Retry and Cancel buttons.

YesNo— The message box will show Yes and No buttons.

YesNoCancel— The message box will show Yes, No, and Cancel buttons.

Here are the MessageBoxIcon enumeration values:

Asterisk— Shows an icon displaying a lowercase letter i in a circle.

Error— Shows an icon displaying a white X in a circle with a red background.

Exclamation— Shows an icon displaying an exclamation point in a triangle with a yellow background.

Hand— Shows an icon displaying a white X in a circle with a red background.

Information— Shows an icon displaying a lowercase letter i in a circle.

None— Shows no icons.

Question— Shows an icon displaying a question mark in a circle.

Stop— Shows an icon displaying white X in a circle with a red background.

Warning— Shows an icon displaying an exclamation point in a triangle with a yellow background.

Here are the MessageBoxDefaultButton enumeration values:

Button1— Makes the first button on the message box the default button.

Button2— Makes the second button on the message box the default button.

Button3— Makes the third button on the message box the default button.

Here are the MessageBoxOptions enumeration values:

DefaultDesktopOnly— Displays the message box on the active desktop.

RightAlign— The message box text is right-aligned.

Example: Refer Note

The InputBox() Function

An InputBox() function will display a message box where the user can enter a value or a message in

the form of text

Syntax : Public Function InputBox(Prompt As String [, Title As _

String = "" [, DefaultResponse As String = "" [, _

XPos As Integer = -1 [, YPos As Integer = -1]]]]) As String

Prompt - the message displayed normally as a question asked.

Title - The title of the Input Box.

default-text - The default text that appears in the input field where users can use it as his intended

input or he may change to the message he wish to enter.

x-position and y-position - the position or the coordinates of the input box.

Example: Refer Note

WORKING WITH MULTIPLE FORMS:

VB.Net allow working with multiple forms.

 A Windows application can either be a Single Form application or multiple form application.

How to Create a New Form in Visual Studio?

Follow the below steps to create a new form in Visual Studio VB.Net application.

Project -> Add New Item -> Windows Form

Example:

Public Class Form1

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

End Sub

Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

Form2.Show()

End Sub

End Class

EVENT HANDLING

Events are basically a user action like key press, clicks, mouse movements, etc., or some occurrence

like system generated notifications.

Applications need to respond to events when they occur.

An event is an action that calls a function or may cause another event. Event handlers are functions

that tell how to respond to an event.

VB.Net is an event-driven language. There are mainly two types of events −

 Mouse events

 Keyboard events

Handling Mouse Events

https://techantena.com/working-multiple-forms-vb-net/3663/working-multiple-forms/

Mouse events occur with mouse movements in forms and controls. Following are the various mouse

events related with a Control class −

 MouseDown − it occurs when a mouse button is pressed

 MouseEnter − it occurs when the mouse pointer enters the control

 MouseHover − it occurs when the mouse pointer hovers over the control

 MouseLeave − it occurs when the mouse pointer leaves the control

 MouseMove − it occurs when the mouse pointer moves over the control

 MouseUp − it occurs when the mouse pointer is over the control and the mouse button is

released

 MouseWheel − it occurs when the mouse wheel moves and the control has focus

The event handlers of the mouse events get an argument of type MouseEventArgs. The

MouseEventArgs object is used for handling mouse events. It has the following properties −

 Buttons − indicates the mouse button pressed

 Clicks − indicates the number of clicks

 Delta − indicates the number of detents the mouse wheel rotated

 X − indicates the x-coordinate of mouse click

 Y − indicates the y-coordinate of mouse click

Example: Refer Note

Handling Keyboard Events

 KeyDown − occurs when a key is pressed down and the control has focus

 KeyPress − occurs when a key is pressed and the control has focus

 KeyUp − occurs when a key is released while the control has focus

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs. This

object has the following properties −

 Alt − it indicates whether the ALT key is pressed

 Control − it indicates whether the CTRL key is pressed

 Handled − it indicates whether the event is handled

 KeyCode − stores the keyboard code for the event

 KeyData − stores the keyboard data for the event

 KeyValue − stores the keyboard value for the event

 Modifiers − it indicates which modifier keys (Ctrl, Shift, and/or Alt) are pressed

 Shift − it indicates if the Shift key is pressed

The event handlers of the KeyDown and KeyUp events get an argument of type KeyEventArgs. This

object has the following properties −

 Handled − indicates if the KeyPress event is handled

 KeyChar − stores the character corresponding to the key pressed

Example: Refer Note

TEXT BOX CONTROL:

Text box controls allow entering text on a form at runtime.

By default, it takes a single line of text, however, you can make it accept multiple texts and even add

scroll bars to it.

Properties:

Property & Description

Font:Gets or sets the font of the text displayed by the control.

FontHeight:Gets or sets the height of the font of the control.

ForeColor:Gets or sets the foreground color of the control.

Lines:Gets or sets the lines of text in a text box control.

Multiline:Gets or sets a value indicating whether this is a multiline TextBox control.

PasswordChar:Gets or sets the character used to mask characters of a password in a single-

line TextBox control.

ReadOnly:Gets or sets a value indicating whether text in the text box is read-only.

ScrollBars:Gets or sets which scroll bars should appear in a multiline TextBox control. This

property has values −

 None

 Horizontal

 Vertical

 Both

TabIndex:Gets or sets the tab order of the control within its container.

Text:Gets or sets the current text in the TextBox.

TextAlign:Gets or sets how text is aligned in a TextBox control. This property has values −

 Left

 Right

 Center

TextLength:Gets the length of text in the control.

WordWrap:Indicates whether a multiline text box control automatically wraps words to the

beginning of the next line when necessary.

Methods:

Method Name & Description

AppendText:Appends text to the current text of a text box.

Clear:Clears all text from the text box control.

Copy:Copies the current selection in the text box to the Clipboard.

Cut:Moves the current selection in the text box to the Clipboard.

Paste:Replaces the current selection in the text box with the contents of the Clipboard.

Paste(String):Sets the selected text to the specified text without clearing the undo buffer.

ResetText:Resets the Text property to its default value.

ToString:Returns a string that represents the TextBoxBase control.

Undo:Undoes the last edit operation in the text box.

Events

Event & Description

Click:Occurs when the control is clicked.

DoubleClick:Occurs when the control is double-clicked.

TextAlignChanged:Occurs when the TextAlign property value changes.

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 TextBox1.Text = "Hello"

 End Sub

i) Creating Multiline,WordWrap Textboxes:

Multiline:Gets or sets a value indicating whether this is a multiline TextBox control.

WordWrap:Indicates whether a multiline text box control automatically wraps words to the

beginning of the next line when necessary.

Private Sub Form1_Load(sender As Object, e As EventArgs) Handles MyBase.Load

 TextBox1.Multiline = True

 TextBox1.Text = "Line 1"

 TextBox1.Text = TextBox1.Text & ControlChars.NewLine & "Line 2"

 End Sub

ii) Accessing Text In A Textbox:

Private Sub Button1_click_1(ByVal sender as System.Object,ByVal e As System.EventArgs)Handles

Button1.Click

 TextBox1.Text=”Hello”

 Dim Str As String

 Str=TextBox1.Text

 TextBox2.Text=Str

End Sub

iii) Adding Scrollbar to a textbox: Gets or sets which scroll bars should appear in a multiline

TextBox control. This property has values “None,Horizontal,Vertical,Both”

 TextBox1.ScrollBars = ScrollBars.Vertical;

If you want both scroll bars(vertical and horizondal) you should set ..

 TextBox2.ScrollBars = ScrollBars.Both;

iv) Aligning Text in textbox:

Gets or sets how text is aligned in a TextBox control. This property has values −

 Left

 Right

 Center

 textbox1.TextAlign=HorizontalAlignment.Center

RICH TEXTBOX:

RichTextBox Control allows user to display, input, edit and format text information.

RichTextBox Control supports advance formatting features as compared to TextBox. Using

RichTextBox user can format only selected portion of the text. User can also format paragraph using

RichTextBox Control. RichTextBox Control also allows user to save as well as load file of RTF

format and Standard ASCII format.

Property Purpose

BackColor It is used to get or set background color of the RichTextBox.

Font It is used to set Font Face, Font Style, Font Size and Effects of the text

associated with RichTextBox Control.

ForeColor It is used to get or set Fore color of the text associated with RichTextBox

Control.

Multiline It is used to specify whether RichTextBox can be expanded to enter more than

one line of text or not. It has Boolean value. Default value is true.

ScrollBars It is used to get or set type of scrollbars to be added with RichTextBox control.

It has following 4 options:

(1) None

(2) Horizontal

(2) Vertical

(3) Both

Default value is Both.

Size It is used to get or set height and width of RichTextBox control in pixel.

Text It is used to get or set text associated with RichTextBox Control.

SelectionAlignment It is used to get or set horizontal alignment of the text selected in RichTextBox.

SelectionBackColor It is used to get or set BackColor of the text selected in RichTextBox.

SelectionColor It is used to get or set Fore Color of the text selected in RichTextBox.

SelectionFont It is used to get or set font face, font style, and font size of the text selected in

RichTextBox.

SelectionLength It is used to get or set number of characters selected in the RichTextBox.

SelectionStart It is used to get or set starting point of the text selected in the RichTextBox.

Cut It is used to move current selection of RichTextBox into clipboard.

Copy It is used to copies selected text of RichTextBox in clipboard.

Paste It is used to replace current selection of TextBox by contents of clipboard. It is

also used to move contents of Clipboard to RichTextBox control where cursor is

currently located.

Private Sub OpenToolStripMenuItem Click(...) Handles OpenToolStripMenuItem.Click

 If DiscardChanges() Then

 OpenFileDialog1.Filter = "RTF Files|*.RTF|DOC Files|*.DOC|" &"Text Files|*.TXT|All

Files|*.*"

 If OpenFileDialog1.ShowDialog() = DialogResult.OK Then

 fName = OpenFileDialog1.FileName

 Editor.LoadFile(fName)

 Editor.Modified = False

 End If

 End If

End Sub

LABELS: The Label control represents a standard Windows label. It is generally used to display some

informative text on the GUI which is not changed during runtime.

Property & Description

Autosize:Gets or sets a value specifying if the control should be automatically resized to

display all its contents.

BorderStyle:Gets or sets the border style for the control.

FlatStyle:Gets or sets the flat style appearance of the Label control

Font:Gets or sets the font of the text displayed by the control.

FontHeight:Gets or sets the height of the font of the control.

ForeColor:Gets or sets the foreground color of the control.

Text:Gets or sets the text associated with this control.

TextAlign:Gets or sets the alignment of text in the label.

Events

Event & Description

Click:Occurs when the control is clicked.

DoubleClick:Occurs when the control is double-clicked.

Leave:Occurs when the input focus leaves the control.

LostFocus:Occurs when the control loses focus.

TabIndexChanged:Occurs when the TabIndex property value changes.

TabStopChanged:Occurs when the TabStop property changes.

TextChanged:Occurs when the Text property value changes.

UNIT 3

BUTTON:

The Button control represents a standard Windows button. It is generally used to generate a Click event

by providing a handler for the Click event.

Properties

AutoSizeMode:Gets or sets the mode by which the Button automatically resizes itself.

 BackColor:Gets or sets the background color of the control.

 BackgroundImage:Gets or sets the background image displayed in the control.

 DialogResult:Gets or sets a value that is returned to the parent form when the button is clicked.

ForeColor:Gets or sets the foreground color of the control.

 Image:Gets or sets the image that is displayed on a button control.

 Location:Gets or sets the coordinates of the upper-left corner of the control relative to the upper-

left corner of its container.

 TabIndex:Gets or sets the tab order of the control within its container.

 Text:Gets or sets the text associated with this control.

Methods

GetPreferredSize:Retrieves the size of a rectangular area into which a control can be fitted.

 NotifyDefault:Notifies the Button whether it is the default button so that it can adjust.

 Select:Activates the control.

 ToString:Returns a String containing the name of the Component, if any.

Events

 Click:Occurs when the control is clicked.

 DoubleClick:Occurs when the user double-clicks the Button control.

 GotFocus:Occurs when the control receives focus.

 TabIndexChanged:Occurs when the TabIndex property value changes.

 TextChanged:Occurs when the Text property value changes.

 Validated:Occurs when the control is finished validating.

CHECKBOX

The CheckBox control allows the user to set true/false or yes/no type options. The user can select or

deselect it. When a check box is selected it has the value True, and when it is cleared, it holds the value

False.

The CheckBox control has three states, checked, unchecked and indeterminate. In the indeterminate

state, the check box is grayed out. To enable the indeterminate state, the ThreeState property of the check

box is set to be True.

Properties of the CheckBox Control

 Appearance:Gets or sets a value determining the appearance of the check box.

 AutoCheck:Gets or sets a value indicating whether the Checked or CheckedState value .

 CheckAlign:Gets or sets the horizontal and vertical alignment of the check mark on the check.

 Checked:Gets or sets a value indicating whether the check box is selected.

 CheckState:Gets or sets the state of a check box.

 Text:Gets or sets the caption of a check box.

 ThreeState:Gets or sets a value indicating whether or not a check box should allow three check

 states rather than two.

Methods

 OnCheckedChanged:Raises the CheckedChanged event.

 OnCheckStateChanged:Raises the CheckStateChanged event.

 OnClick:Raises the OnClick event.

Events

 AppearanceChanged:Occurs when the value of the Appearance property of the check box is

c hanged.

 CheckedChanged:Occurs when the value of the Checked property of the CheckBox control is

changed.

 CheckStateChanged:Occurs when the value of the CheckState property of the CheckBox control is

changed.

RADIO BUTTON

The RadioButton control is used to provide a set of mutually exclusive options. The user can select one

radio button in a group. If you need to place more than one group of radio buttons in the same form, you

should place them in different container controls like a GroupBox control.

The Checked property of the radio button is used to set the state of a radio button. You can display text,

image or both on radio button control. You can also change the appearance of the radio button control by

using the Appearance property.

Properties

 Appearance:Gets or sets a value determining the appearance of the radio button.

 AutoCheck:Gets or sets a value indicating whether the Checked value and the appearance of the

control automatically change when the control is clicked.

 CheckAlign:Gets or sets the location of the check box portion of the radio button.

 Checked:Gets or sets a value indicating whether the control is checked.

 Text:Gets or sets the caption for a radio button.

 TabStop:Gets or sets a value indicating whether a user can give focus to the RadioButton control

using the TAB key.

Methods

 PerformClick:Generates a Click event for the control, simulating a click by a user.

Events

 AppearanceChanged:Occurs when the value of the Appearance property of the RadioButton c

ontrol is changed.

 CheckedChanged:Occurs when the value of the Checked property of the RadioButton control

is changed.

LIST BOX

The ListBox represents a Windows control to display a list of items to a user. A user can select an item

from the list. It allows the programmer to add items at design time by using the properties window or at

the runtime.

Properties

Items: Gets the items of the list box.

MultiColumn: Gets or sets a value indicating whether the list box supports multiple columns.

SelectedIndex: Gets or sets the zero-based index of the currently selected item in a list box.

SelectedItem: Gets or sets the currently selected item in the list box.

SelectionMode: Gets or sets the method in which items are selected in the list box. This property has

values:

 None

 One

 MultiSimple

 MultiExtended

Sorted: Gets or sets a value indicating whether the items in the list box are sorted alphabetically.

Text: Gets or searches for the text of the currently selected item in the list box.

TopIndex: Gets or sets the index of the first visible item of a list box.

Methods of the ListBox Control

ClearSelected: Unselects all items in the ListBox.

EndUpdate: Resumes drawing of a list box after it was turned off by the BeginUpdate method.

FindString: Finds the first item in the ListBox that starts with the string specified as an argument.

GetSelected: Returns a value indicating whether the specified item is selected.

SetSelected: Selects or clears the selection for the specified item in a ListBox.

OnSelectedIndexChanged: Raises the SelectedIndexChanged event.

OnSelectedValueChanged: Raises the SelectedValueChanged event.

Events

 Click:Occurs when a list box is selected.

 SelectedIndexChanged:Occurs when the SelectedIndex property of a list box is changed.

COMBO BOX

The ComboBox control is used to display a drop-down list of various items. It is a combination of a text

box in which the user enters an item and a drop-down list from which the user selects an item.

Properties

Items:Gets an object representing the collection of the items contained in this ComboBox.

SelectedIndex:Gets or sets the index specifying the currently selected item.

SelectedItem:Gets or sets currently selected item in the ComboBox.

SelectionLength:Gets or sets the number of characters selected in the editable portion of the combo

box.

Sorted:Gets or sets a value indicating whether the items in the combo box are sorted.

 Text:Gets or sets the text associated with this control.

Methods

FindString:Finds the first item in the combo box that starts with the string specified as an argument.

FindStringExact:Finds the first item in the combo box that exactly matches the specified string.

SelectAll:Selects all the text in the editable area of the combo box.

 Events

DropDown:Occurs when the drop-down portion of a combo box is displayed.

DropDownClosed:Occurs when the drop-down portion of a combo box is no longer visible.

DropDownStyleChanged:Occurs when the DropDownStyle property of the ComboBox has changed.

SelectedIndexChanged:Occurs when the SelectedIndex property of a ComboBox control has

changed.

SelectionChangeCommitted:Occurs when the selected item has changed and the change appears in the

combo box.

PICTURE BOX: The PictureBox control is used for displaying images on the form. The Image property

of the control allows you to set an image both at design time or at run time.

Properties

Image:Gets or sets the image that is displayed in the control.

SizeMode:Determines the size of the image to be displayed in the control. This property takes its

value from the PictureBoxSizeMode enumeration, which has values:

 Normal - the upper left corner of the image is placed at upper left part of the picture box

 StrechImage - allows stretching of the image

 AutoSize - allows resizing the picture box to the size of the image

 CenterImage - allows centering the image in the picture box

 Zoom - allows increasing or decreasing the image size to maintain the size ratio.

TabIndex:Gets or sets the tab index value.

TabStop:Specifies whether the user will be able to focus on the picture box by using the TAB key.

Text:Gets or sets the text for the picture box.

Methods

CancelAsync:Cancels an asynchronous image load.

Load:Displays an image in the picture box

LoadAsync:Loads image asynchronously.

ToString:Returns the string that represents the current picture box.

Events

Click:Occurs when the control is clicked.

Enter:Overrides the Control.Enter property.

ForeColorChanged:Occurs when the value of the ForeColor property changes.

KeyDown:Occurs when a key is pressed when the control has focus.

KeyPress:Occurs when a key is pressed when the control has focus.

KeyUp:Occurs when a key is released when the control has focus.

Leave:Occurs when input focus leaves the PictureBox.

Public Class Form1

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

MyBase.Load

 PictureBox1.Image = Image.FromFile("d:\testImage.jpg")

 PictureBox1.SizeMode = PictureBoxSizeMode.StretchImage

 End Sub

End Class

SCROLLBAR

The ScrollBar controls display vertical and horizontal scroll bars on the form. This is used for navigating

through large amount of information. There are two types of scroll bar controls: HScrollBar for

horizontal scroll bars and VScrollBar for vertical scroll bars. These are used independently from each

other.

Properties

AutoSize:Gets or sets a value indicating whether the ScrollBar is automatically resized to fit its

contents.

BackColor:Gets or sets the background color for the control.

ForeColor:Gets or sets the foreground color of the scroll bar control.

Maximum:Gets or sets the upper limit of values of the scrollable range.

Minimum:Gets or sets the lower limit of values of the scrollable range.

Methods

OnClick :Generates the Click event.

 Select:Activates the control.

Events

Click:Occurs when the control is clicked.

DoubleClick:Occurs when the user double-clicks the control.

Scroll:Occurs when the control is moved.

ValueChanged:Occurs when the Value property changes, either by handling the Scroll event or

programmatically.

Example: Public Class Form1

Private Sub Form1_Load(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles

MyBase.LoaD

 TextBox1.Multiline = True

 TextBox1.ScrollBars = ScrollBars.Both

 End Sub End Class

SPLITTERS:

SplitContainer control provides functionality of a splitter to divide and resize two controls.

Creating a SplitContainer: A SplitContainer has two built-in panels and a splitter.

Orientation

Panels on a SplitContainer can be placed horizontally or vertically.

 splitContainer1.Orientation = Orientation.Horizontal

Panel1 and Panel2

A SplitContainer has two panels. The first panel is represented by Panel1 and second panel is

represented by Panel2. These panels are a type of SplitterPanel and can have their own properties and

events.

Dim leftPanel As SplitterPanel = SplitContainer1.Panel1

leftPanel.BackColor = Color.Green

leftPanel.ForeColor = Color.Yellow

Dim rightPanel As SplitterPanel = SplitContainer1.Panel2

rightPanel.BackColor = Color.OrangeRed

rightPanel.ForeColor = Color.White

splitContainer1.Panel1MinSize = 10

splitContainer1.Panel2MinSize = 50

splitContainer1.SplitterDistance = 50

splitContainer1.SplitterIncrement = 10

splitContainer1.SplitterWidth = 10

Properties

SplitterDistance property gets or sets the location of the splitter, in pixels, from the left or top

edge of the SplitContainer.

SplitterIncrement property gets or sets a value representing the increment of splitter movement in

pixels.

SplitterRectangle property gets the size and location of the splitter relative to the SplitContainer.

SplitterWidth property Gets or sets the width of the splitter in pixels.

PICKER CONTROL: Two types i) DateTimePicker Control ii) MonthCalendar Control

 i) DateTimePicker Control: The DateTimePicker control allows the user to select or

display date and time values with a specified format in Windows Forms. Furthermore, we can determine

the current date and time using the Value property of the DateTimePicker control. By default, the Value

property returns the current date and time in the DateTimePicker.

Properties:

Property Description

BackgroundImage It is used to set the background image for the DateTimePicker control.

CalendarFont It is used to set the font style for the calendar in the DateTimePicker control.

CustomFormat The CustomFormat property is used to set the custom date and time format

string in the DateTimePicker control.

Controls It is used to obtain the collection of controls that are stored within the

DateTimePicker control.

Checked A checked property is used to check whether the value property is checked

with a valid date and time in the DateTimePicker control.

Format The Format property of the DateTimePicker is used to set the format for the

Date and time displayed in the Windows Form.

MaxDate The MaxDate property of the DateTimePicker is used to set the max data and

time in control selected by the user.

Name The Name property of the DateTimePicker control allows the user to set the

name of the control.

MinimumDateTime It is used to set the minimum date value that can be allowed by control.

Methods

Method Description

Contains(Control) It is used to validate whether the specified control is a child of the

DateTimePicker control or not.

CreateControl() It is used to force the creation of visible control to handle the creation and any

visible child controls.

GetAutoSizeMode() The GetAutoSizeMode() method is used to check the behavior of the

DateTimePicker control when the AutoAize property is enabled.

ResetBackColor() It is used to reset the back color of the DateTimePicker control.

Select() The Select() method is used to start or activate the DateTimePicker control.

Show() The Show() method is used to display the control to the user.

ToString() The ToString() method is used to return a string that represents the current

DateTimePicker control.

 Private Sub Button1_Click(sender As Object, e As EventArgs) Handles Button1.Click

 Dim dp As Date = DateTimePicker1.Value

 Dim dp2 As Date = DateTimePicker2.Value

 Dim result As TimeSpan = dp.Subtract(dp2)

 Dim ds As Integer = result.TotalDays

 TextBox1.Text = ds

 TextBox1.ForeColor = ForeColor.Red

 MsgBox(" Days = " & ds)

 End Sub

End Class

 ii) MonthCalendar Control:

Properties Description

AnnuallyBoldedDate Property holds an array of DateTime objects specifying which days

should be bold.

BoldedDates Property used to Get or sets an array of DateTime objects specifying

which dates shpuld be bold.

CalendarDimensions Property used to Get or set the number of columns.

FirstDayOfWeek Property to get or set the first day of the week.

MaxDate Property to get or set the maximum possible date.

MaxSelectionCount Property holds the maximum number of days that can be selected.

MinDate Property to get or set the minimum possible date.

ScrollChange Property holds the scroll rate.

TodaysDate Property set or get the todays date.

TodayDateSet Property specifies whether the Date Time property has been set.

Methods:

Method Description

AddBoldedDate Method used to add a day that will be displayed in Bold.

AddMonthlyBoldedDate Method used to add a day that will be displayed in bold monthly.

RemoveBoldedDate Method used to remove a date from the calendars internal list o

monthly bolded dates.

SetCalendarDimension Method used to set the number of columns and rows.

SetDate Method used to set the selected Date.

SetSelectionRange Method used to set the selected dates to the given range of dates.

Events:

Events Description

Datechanged Triggered when the date in the calendar control is changed.

DateSelected

Public Class Form11

 Private Sub MonthCalendar1_DateChanged(ByVal sender As System.Object, ByVal e As

System.Windows.Forms.DateRangeEventArgs) Handles MonthCalendar1.DateChanged

 'selected date will display in Label

 Label2.Text = 'Selected date is ' + MonthCalendar1.SelectionRange.Start

 End Sub

End Class

TIMER CONTROL

Timer Control is used when user wants to perform some task or action continuously at regular

interval of time.

Property

Property Name Description

Name It is used to specify name of the Timer Control.

Enabled It is used to determine whether Timer Control will be enabled or not. It has

boolean value true or false. Default value is false.

Interval It is used to specify interval in millisecond. Tick event of Timer Control

generates after the time which is specified in Interval Property.

Methods

Method Name Description

Start This method is used to start the Timer Control.

Stop This method is used to stop the Timer Control.

Events

Event Name Description

Tick Tick event of the Timer Control fires continuously after the time which is

specified in the Inteval property of Timer Control.

lblHour.Text=Now.Hour

lblMinute.Text=Now.Minute

lblSecond.Text = Now.Second

Now double click on the Start Button and write following code in the Click event of Button.

Timer1.Start()

Now double click on the Stop Button and write following code in the Clcik event of Button.

Timer1.Stop()

MENU

Menu is one of the most common elements of Graphical User Interface.

Menu is a one type of control that represents a group of choices to the user and allows user to

select any of them according to their requirement.

It can be attached only with form either SDI or MDI.

You can repeat same procedure in order to create Menu Item and Sub Menu as per your requirement.

Property Purpose

BackColor It is used to get or set back color of the MenuStrip.

Enabled It is used to specify whether MenuStrip is enabled or not at run time. It has Boolean value.

Default value is true.

Font It is used to set Font Face, Font Style, Font Size and Effects of the text associated with Menu

Items of MenuStrip Control.

Items It represents collection of Menu Items contained in Menu Strip control.

Layout

Style

I t is used to get or set Layout Style of Menu Strip Control. It has following 5 options: (1)

Stack with Overflow

((2) Horizontal Stack With Overflow

 (3) Vertical Stack With Overflow

 (4) Flow

 (5) Table

Text

Direction

It is used to get or set value which determines direction of text in each menu Item. It has

following 3 options:

(1) Horizontal:

(2) Vertical90:

(3) Vertical270:

Visible It is used to specify whether MenuStrip is visible or not at run time. It has Boolean value.

Default value is true.

Shortcut Key allows user to perform action associated with particular Menu Item using keyboard.

Shortcut Key allows user to perform action with a single keystroke.

Shortcut Key is a combination of (Alt, Shift, Ctrl) key and other key as shown in the figure below:

Property Purpose

ShortcutKeys It is used to assign Shortcut Key to Menu Item.

ShowShortcutKeys It is used to specify whether Shortcut Key is displayed beside Menu Item or not. It has

Boolean value. Default value is False.

ShortcutKey

DisplayString

It is used to get or set string that is display instead of Shortcut Key.

User can add checkmark to the left side of Menu Item to indicate that the Menu Item is selected or

not.

Property Purpose

Checked It is used to specify whether checkmark will be displayed to the left side of Menu item or

Not. It has Boolean value. Default is False.

CheckOnClick It is used to specify whether Menu Item will toggle (change) its state or not when it is

clicked. It has Boolean value. Default value is false.

CheckState It is used to get or set state of menu item. It can have one of the following 3 values:

(1) Checked

(2) Unchecked

(3) Indeterminate

Default value is Unchecked.

BUILD IN DUALOG BOXES:

i) OPEN FILE DIALOG:

Property Purpose

FileName It represents full path of the file that is selected by user in the OpenFileDialog Control.

Filter It is used to specify which type of files will be display in the OpenFileDialog Control.

If user wants to display only executable files than user can set Filter Property to

Executable File | *.exe

If user wants to display executable files and Image Files than user can set Filter

Property to Executable File | *.exe | Image Files| *.jpeg

MultiSelect It is used to specify whether multiple files can be selected from OpenFileDialog

control or not. It has Boolean value. Default value is false.

ShowReadOnly It is used to specify whether “Open as read only” checkbox will be displayed in

OpenFileDialog control or not. It has Boolean value. Default value is false.

ReadOnlyChecked It is used to specify whether “Open as read only” checkbox is selected or not when

OpenFileDialog control is open. It has Boolean value. Default value is false.

Title It is used to specify the text to be display in the title bar of the OpenFileDialog Control.

Methods

Method Purpose

ShowDialog It is used to Show or run OpenFileDialog Control.

Reset It is used to reset all the properties of OpenFileDialog to its default values.

OpenFile It is used to open the file which is selected by user in read only mode.

Events:

Event Purpose

FileOk It is the default event of OpenFileDialog Control. It fires each time user clicks on Open button of

OpenFileDialog Control. It is used to perform specific task when user click on Open button.

ii) SAVE FILE DIALOG:

SaveFileDialog Control allows user to:

(1) Specify Location where to save the file.

(2) Specify Name of File by which it is saved.

Properties:

Property Purpose

DefaultExt It is used to specify default extension for file name. Default extension is appended at

the end of file name if user selects file with no extension.

FileName It represents full path of the file that is selected by user in the SaveFileDialog

Control.

Filter It is used to specify which type of files will be display in the SaveFileDialog Control.

If user wants to display only executable files than user can set Filter Property to

Executable File | *.exe

If user wants to display executable files and Image Files than user can set Filter

Property to Executable File | *.exe | Image Files| *.jpeg

Title It is used to specify the text to be display in the title bar of the SaveFileDialog

Control.

Methods:

Method Purpose

ShowDialog It is used to Show or run SaveFileDialog Control.

Reset It is used to reset all the properties of SaveFileDialog to its default values.

OpenFile It is used to open the file which is selected by user in read/write mode.

Events:

Event Purpose

FileOk It is the default event of SaveFileDialog Control. It fires each time user clicks on Save

button of SaveFileDialog Control. It is used to perform specific task when user click on

Save button.

iii) COLOR DIALOG CONTROL:

Color Dialog Control allows user to select color from the list of available colors.

User can also define custom colors using Color Dialog control.

Properties:

Property Purpose

Color It is used to get or set the color selected by the user in Color Dialog Control. It is also

used set specific color in the Color Dialog Control.

FullOpen It is used to specify whether Custom Color Section of the Color Dialog Control is by

default displayed or not. It has Boolean value. Its default value is false.

AllowFullOpen It is used to enable or disable Define Custom Color button In Color Dialog Control. It

has Boolean value. Its default value is true.

AnyColor It is used to specify whether Color Dialog will display all the available colors in the set of

basic colors or not.

SolidColorOnly It is used to specify whether Color Dialog will restrict user to select only solid colors or

not. It has Boolean value. Default value is False.

Methods:

Method Purpose

ShowDialog It is used to Show or run Color Dialog Control.

Reset It is used to reset all the properties of ColorDialog to its default values.

If ColorDialog1.ShowDialog = Windows.Forms.DialogResult.OK Then

txtName.ForeColor = ColorDialog1.Color

End If

iv) FONT DIALOG CONTROL

Font Dialog Control allows user to:

(1) Set Font Face

(2) Set Font Style

(3) Set Font Size

(4) Set Font Color

(5) Set Font Effects

Properties:

Property Purpose

MaxSize It is sued to specify Maximum Font Size that user can select from Font Dialog Control.

MinSize It is sued to specify Minimum Font Size that user can select from Font Dialog Control.

Color It is used to get color selected by user in the Font Dialog Control. User can also set the

color in Font Dialog control using this property.

Font It is used to get the font selected in the Font Dialog Control. User can also set the font

style in the Font Dialog Control.

ShowApply It is used to specify whether Apply button will be shown in the Font Dialog Control or

not. It has Boolean value. Default value is false.

ShowColor It is used to specify whether color selection combo box will be shown in the Font Dialog

Control or not. It has Boolean value. Default value is false.

ShowEffects It is used to specify whether font effect options such as Underline, Strikeout and color

selection will be shown in the Font Dialog Control or not. It has Boolean value. Default

value is true.

Methods:

Method Purpose

ShowDialog It is used to Show or run Font Dialog Control.

Reset It is used to reset all the options of FontDialog to its default values.

Events:

Event Purpose

Apply It is the default event of Font Dialog Control. It fires each time user clicks on Apply button of

Font Dialog Control. It is used to apply font settings on selected text without closing Font

Dialog Control.

UNIT 4

IMAGELIST:

Properties Description

ColorDepth Property gets the color depth for this image list.

Handle Property gets the handle for this image list.

Images Property gets an ImageCollection object for this image list.

ImageSize Property used to get or set the image size for the images in the list.

TransparentColor Property used to get or set the transparent color for this list.

Methods:

Method Description

Draw Method used to draw the given image.

TREE VIEW

The TreeView control is used to display hierarchical representations of items similar to the ways the files

and folders are displayed in the left pane of the Windows Explorer. Each node may contain one or more

child nodes.

Properties

Property Description

BackColor Gets or sets the background color for the control.

BackgroundImage Gets or set the background image for the TreeView control.

BackgroundImageLayout Gets or sets the layout of the background image for the TreeView

control.

BorderStyle Gets or sets the border style of the tree view control.

Font Gets or sets the font of the text displayed by the control.

FontHeight Gets or sets the height of the font of the control.

ForeColor The current foreground color for this control, which is the color the

control uses to draw its text.

Methods

Method Name & Description

CollapseAll: Collapses all the nodes including all child nodes in the tree view control.

ExpandAll:Expands all the nodes.

GetNodeAt:Gets the node at the specified location.

GetNodeCount:Gets the number of tree nodes.

Sort :Sorts all the items in the tree view control.

ToString :Returns a string containing the name of the control.

Events

Event Description

AfterCheck Occurs after the tree node check box is checked.

AfterCollapse Occurs after the tree node is collapsed.

AfterExpand Occurs after the tree node is expanded.

AfterSelect Occurs after the tree node is selected.

i) The TreeNode Class

The TreeNode class represents a node of a TreeView. Each node in a TreeView control is an object of the

TreeNode class.

Properties:

Property Description

BackColor Gets or sets the background color of the tree node.

Checked Gets or sets a value indicating whether the tree node is in a checked state.

ContextMenu Gets the shortcut menu that is associated with this tree node.

FirstNode Gets the first child tree node in the tree node collection.

FullPath Gets the path from the root tree node to the current tree node.

Index Gets the position of the tree node in the tree node collection.

IsEditing Gets a value indicating whether the tree node is in an editable state.

Methods

Method Name & Description

Collapse:Collapses the tree node.

Expand:Expands the tree node.

ExpandAll:Expands all the child tree nodes.

GetNodeCount:Returns the number of child tree nodes.

Remove :Removes the current tree node from the tree view control.

LISTVIEW CONTROL

List views displays a collection of items that can be displayed using one of five different views, such as

LargeIcon, Details , SmallIcon, List and Tile.

i) Add Columns in VB.Net ListView : You can add columns in Listview by using Columns.Add()

method.

listView 1.Columns.Add("Produc

ii) Add Item in VB.Net Listview :You can add items in listbox using ListViewItem which represents an

item in a ListView control.

Dim arr As String() = N

Dim itm As ListView Ite

'add items to ListView

iii) Get selected item from VB.Net ListView:

productName = listView 1.Selec

iv) Sorting VB.Net Listview Items: If the Sorted property of Listview is set to true, then the ListView

items are sorted. The following code sorts the ListView items:

ListView 1.Sorted = True

v) Add Checkbox in Listview: You can add checkbox in VB.Net Listview columns.

myListView .CheckBoxes = True

myListView .Columns.Add(text,

ListView 1.View = View .Details

ListView 1.GridLines = True

ListView 1.FullRow Select = True

CREATING A TOOLBAR

Toolbars are referred to in Visual Basic as ToolStrips.

The first step in creating a toolbar is to add a ToolStrip control to the form.

 Begin by starting Visual Studio and creating a new Windows Application project named vbToolbar

https://www.techotopia.com/index.php/File:Visual_basic_new_toolbar.jpg
https://www.techotopia.com/index.php/File:Visual_basic_toolbar_running.jpg

Private Sub ToolStripButton1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

 Handles ToolStripButton1.Click

 MyDateTime.Show()

End Sub

Private Sub ToolStripButton2_Click(ByVal sender As System.Object, ByVal e As System.EventArgs)

 Handles ToolStripButton2.Click

 MyDateTime.Hide()

End Sub

i) Changing the Toolbar Position

By default, the Visual Basic ToolStrip object will be positioned across the top edge of the form.

Whilst this is the most common location for a toolbar, it can be positioned along the top, bottom, left or

right edges of a form, or even in the center of the form using the Dock property. To modify this property,

select the ToolStrip object in the form and look for the Dock property in the Properties panel. Click on

the down arrow in the value field to display the location map:

https://www.techotopia.com/index.php/File:Visual_basic_toolbar_datetime.jpg

STATUS BAR: The Windows Forms StatusBar control is used on forms as an area, usually displayed at

the bottom of a window, in which an application can display various kinds of status information.

StatusBar controls can have status-bar panels on them that display icons to indicate state, or a series of

icons in an animation that indicate a process is working.

You can display a single message on the status bar by setting the ShowPanels property to false (the

default) and setting the Text property of the status bar to the text you want to appear in the status bar.

You can divide the status bar into panels to display more than one type of information by setting the

ShowPanels property to true and using the Add method of StatusBar.StatusBarPanelCollection.

Imports System.Drawing

Imports System.Windows.Forms

Public Class Exercise

 Inherits System.Windows.Forms.Form

 Dim statusbar As StatusStrip

 Public Sub New()

 statusbar = new StatusStrip

 Controls.Add(statusbar)

 End Sub

 Public Shared Function Main() As Integer

 Application.Run(New Exercise)

 Return 0

 End Function

End Class

https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.statusbar
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.statusbar
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.statusbar.showpanels
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.statusbar.text
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.statusbar.showpanels
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.statusbar.statusbarpanelcollection.add
https://learn.microsoft.com/en-us/dotnet/api/system.windows.forms.statusbar.statusbarpanelcollection
https://www.techotopia.com/index.php/File:Visual_basic_toolbar_location.jpg

PROGRESS BAR : It used to graphically display the progress of particular task. Thus using ProgressBar

control you can display how much task has been completed and how much task is remaining.

PropertyName Description

Minimum It Get or Set Lower Bound of the range within which

ProgressBar Control works.

Maximum It Get or Set Upper Bound of the range within which

ProgressBar Control works.

Value It Get or Set current value of the ProgressBar within range

specified using Minimum and Maximum property.

Step It Get or Set Step value by which the current value of

ProgressBar control is Increment.

Style It is used to set the Style of progressBar Control. It can have

one of the following value: Blocks,Continuous,Marquee

Visible It is used to set whether ProgressBar control is visible on the

form or not. It has boolean value true or false. Default value is

true.

Enabled It is used to set whether ProgressBar control is enabled or not.

It has boolean value true or false. Default value is true.

MarqueeAnimationSpeed It Get or Set speed of marquee animation when Style property

of ProgressBar Control is set to marquee. The speed is in

milisecond. Default value is 100 ms.

Methods:

Method Name Description

Increment It is used to increment the current value of ProgressBar

Control by specific value.

Syntax:

ProgressBar1.Increment(value)

PerformStep It is used to increment the current value of ProgressBar

Control by the value specified in the Step property of

ProgressBar.

Syntax:

progressBar1.PerformStep()

Dim i As Integer

For i = ProgressBar1.Minimum To ProgressBar1.Maximum - 1

ProgressBar1.PerformStep()

Next

TAB CONTROL

These controls include FlowLayoutPanel, TableLayoutPanel, GroupBox, Panel, TabControl, and

SplitContainer.

The TabControl displays data grouped by pages, while the tabs enable the user to quickly jump from

page to page.

CREATING CLASSES:

Syntax

[<attrlist>] [Public | Private | Protected | Friend | Protected [Shadows] [MustInherit |

NotInheritable] Class name [Implements interfacename]

[statements] End Class

Here are the various parts of this statement:

attrlist—Optional. This is the list of attributes for this class. Separate multiple attributes by commas.

Public—Optional. Classes declared Public have public access; there are no restrictions on the use of

public classes.

Private—Optional. Classes declared Private have private access, which is accessible only within its

declaration context.

Protected—Optional. Classes declared Protected have protected access, which means they are

accessible only from within their own class or from a derived class.

Friend—Optional. Classes declared Friend have friend access, which means they are accessible only

within the program that contains their declaration.

Protected Friend—Optional. Classes declared Protected Friend have both protected and friend

accessibility.

Shadows—Optional. Indicates that this class shadows a programming element in a base class.

MustInherit—Optional. Indicates that the class contains methods that must be implemented by a

deriving class.

NotInheritable—Optional. Indicates that the class is a class from which no further inheritance is

allowed.

name—Required. Name of the class.

interfacename—Optional. The name of the interface implemented by this class.

statements—Optional. The statements that make up the variables, properties, events, and methods of

the class.

Each attribute in the attrlist part has the following syntax:

<attrname [({ attrargs | attrinit })]> Attrlist

Here are the parts of the attrlist part:

attrname—Required. Name of the attribute.

attrargs—Optional. List of arguments for this attribute. Separate multiple arguments by commas.

attrinit—Optional. List of field or property initializers. Separate multiple initializers by commas.

Public Class DataClass

Private value As Integer

Public Sub New(ByVal newValue As Integer)

value = newValue

End Sub

Public Function GetData() As Integer

Return value

End Function

End Class

CREATING OBJECTS

You can create objects of a class using the Dim statement; this statement is used at

module, class, structure, procedure, or block level:

[<attrlist>] [{ Public | Protected | Friend | Protected Friend |Private | Static }] [Shared] [Shadows] [

ReadOnly] Dim [WithEvents] name [(boundlist)] [As [New] type] [= initexp

Here are the parts of this statement:

SAME AS CLASS

CREATING MODULES : used modules to divide your code up into smaller units, because modules

were designed primarily to hold code.

Module Module1

Sub Main()

System.Console.WriteLine("Hello from Visual Basic")

System.Console.WriteLine("Press Enter to continue...")

System.Console.ReadLine()

End Sub

End Module

CREATING CONSTRUCTOR: A class constructor is a special member Sub of a class that is executed

whenever we create new objects of that class. A constructor has the name New and it does not have any

return type.

Class Line

 Private length As Double ' Length of a line

 Public Sub New() 'constructor

 Console.WriteLine("Object is being created")

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line()

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line : {0}", line.getLength())

 Console.ReadKey()

 End Sub

End Class

A default constructor does not have any parameter, but if you need, a constructor can have parameters.

Such constructors are called parameterized constructors.

Class Line

 Private length As Double ' Length of a line

 Public Sub New(ByVal len As Double) 'parameterised constructor

 Console.WriteLine("Object is being created, length = {0}", len)

 length = len

 End Sub

 Public Sub setLength(ByVal len As Double)

 length = len

 End Sub

 Public Function getLength() As Double

 Return length

 End Function

 Shared Sub Main()

 Dim line As Line = New Line(10.0)

 Console.WriteLine("Length of line set by constructor : {0}", line.getLength())

 'set line length

 line.setLength(6.0)

 Console.WriteLine("Length of line set by setLength : {0}", line.getLength())

 Console.ReadKey()

 End Sub

End Class

CREATING METHODS: Methods are functions/procedures defined inside the body of a class. They

are used to perform operations with the attributes of our objects. Methods are essential in encapsulation

concept of the OOP paradigm.

Option Strict On

Module Example

 Class Circle

 Public Radius As Integer

 Public Sub SetRadius(ByVal Radius As Integer)

 Me.Radius = Radius

 End Sub

 Public Function Area() As Double

 Return Me.Radius * Me.Radius * Math.PI

 End Function

 End Class

 Sub Main()

 Dim c As New Circle

 c.SetRadius(5)

 Console.WriteLine(c.Area())

 End Sub

End Module

USING INHERITANCE: It is one of the primary concepts of object-oriented programming (OOP) and

it is useful to inherit the properties from one class (base) to another (child) class. The inheritance will

enable us to create a new class by inheriting the properties from other classes to reuse, extend and modify

the behavior of other class members based on our requirements. In visual basic inheritance,

the class whose members are inherited is called a base (parent) class and the class that inherits the

members of base (parent) class is called a derived (child) class.

Syntax

 <access_modifier> Class <base_class_name>

// Base class Implementation

https://www.tutlane.com/tutorial/visual-basic/vb-properties-get-set
https://www.tutlane.com/tutorial/visual-basic/vb-classes-and-objects
https://www.tutlane.com/tutorial/visual-basic/vb-properties-get-set
https://www.tutlane.com/tutorial/visual-basic/vb-classes-and-objects
https://www.tutlane.com/tutorial/visual-basic/vb-classes-and-objects
https://www.tutlane.com/tutorial/visual-basic/vb-classes-and-objects
https://www.tutlane.com/tutorial/visual-basic/vb-classes-and-objects

End Class

 <access_modifier> Class <derived_class_name>

Inherits base_class_name

 // Derived class implementation

End Class

USING PUBLIC INHERITANCE:

Public class form1 Inherits System.Windows.Forms.Form

Dim spot As Dog

Private sub Button1_Click(ByVal sender As System.Object,ByVal e As System.EventArgs) Handles

Button1.Click

Spot=New Dog(Me)

Spot.Breathing()

End Sub

End Class

Public class Animal

 Protected MainFrame As Form1

 Public Sub New(ByVal form1 As Form1)

 MainForm=form1

 End Sub

 Public Sub Breathing()

 MainForm.TextBox1.Text=”Breathing….”

 End Sub

End Class

Public Class Dog

 Inherit Animal

 Public Sub New(ByVal form1 As Form1)

 MyBase.New(form1)

 End Sub

 Public Sub Barking

 MainForm.TextBox1.Text=”Barking…..”

 End Sub

End Class

USING PROTECTED INHERITANCE

Public class form1 Inherits System.Windows.Forms.Form

Dim spot As Dog

Private sub Button1_Click(ByVal sender As System.Object,ByVal e As System.EventArgs) Handles

Button1.Click

 Spot=New Dog(Me)

 Spot.Breathing()

End Sub

End Class

Public class Animal

 Protected MainFrame As Form1

 Public Sub New(ByVal form1 As Form1)

 MainForm=form1

 End Sub

 Public Sub Breathing()

 MainForm.TextBox1.Text=”Breathing….”

 End Sub

End Class

Public Class Dog

 Inherit Animal

 Public Sub New(ByVal form1 As Form1)

 MyBase.New(form1)

 End Sub

 Public Sub Barking()

 MainForm.TextBox1.Text=”Barking…..”

 End Sub

End Class

USING PRIVATE INHERITANCE

Public class form1 Inherits System.Windows.Forms.Form

 Dim spot As Dog

 Dim jaws As Fish

Private sub Button1_Click(ByVal sender As System.Object,ByVal e As System.EventArgs) Handles

Button1.Click

 Spot=New Dog(Me)

 Spot.Breathing()

End Sub

Private sub Button1_Click(ByVal sender As System.Object,ByVal e As System.EventArgs) Handles

Button1.Click

 Jaws=New Fish(Me)

 Jaws.Breathing()

End Sub

End Class

Public class Animal

 Private MainFrame As Form1

 Public Sub New(ByVal form1 As Form1)

 MainForm=form1

 End Sub

 Public Overridable Sub Breathing()

 MainForm.TextBox1.Text=”Breathing….”

 End Sub

End Class

Public Class Dog

 Inherit Animal

 Public Sub New(ByVal form1 As Form1)

 MyBase.New(form1)

 End Sub

 Public Sub Barking()

 MainForm.TextBox1.Text=”Barking…..” ‘Will Not Work

 End Sub

End Class

Public Class Fish Inherit Animal

 Public Sub New(ByVal form1 As Form1)

 MyBase.New(form1)

 End Sub

 Public Overrides Sub Breathing()

 MainForm.TextBox1.Text=”Bubbling….”

 End Sub

End Class

UNIT 5

Accessing data with Server Explorer

To work with a database, you need a connection to that database. In Visual Basic, the Server Explorer

lets you work with connections to various data sources. To display the Server Explorer if it's not already

visible, use the View|Server Explorer menu item, or press Ctrl+Alt+S.

To create that connection, right-click the Data Connections icon in the Server Explorer and select the

Add Connection item, or use the Tools|Connect to Database menu item. Doing so opens the Data Link

Properties dialog

What if you're not using SQL Server, but, say, Oracle to connect to a database? In that case, you click the

Provider tab in the Data Link Properties dialog, as you see in Figure 20.6, and select the type of provider

you're working with—Oracle, MS Jet, and so on (the default is SQL Server). Then you go back to the

Connection tab and choose the specific database file you want to work with

When the connection is set, click the OK button to close the Data Link Properties dialog. Doing so adds a

new connection to the pubs database to the Server Explorer, as you see in Figure 20.3. You can open that

connection (assuming, in this case, that SQL Server is running) and take a look what tables are in the

database.

ACCESSING DATA WITH DATA ADAPTER AND DATA SET

DataSet to hold all of your information from the database

Each imaginary row of the DataSet represents a Row of information in your Access database.

And each imaginary column represents a Column of information in your Access database (called a Field

in database terminology).

The Connection Object and the DataSet can't see each other. They need a go-between so that they

can communicate. This go-between is called a Data Adapter.

The Data Adapter contacts your Connection Object, and then executes a query that you set up.

The results of that query are then stored in the DataSet.

Dim ds As New DataSet

Dim da As OleDb.OleDbDataAdapter

da = New OleDb.OleDbDataAdapter(sql, con)

The Data Adapter

The Data Adapter is a property of the OLEDB object, hence the full stop between the two:

OleDb.OleDbDataAdapter

We're passing this object to the variable called da. This variable will then hold a reference to the

Data Adapter.

da = New OleDb.OleDbDataAdapter(sql, con)

We need something else, though. The sql in between the round brackets is the name of a variable. We

haven't yet set this up. We'll have a look at SQL in a moment. But bear in mind what the Data Adaptor is

doing: Acting as a go-between for the Connection Object and the Data Set

WORKING WITH ADO.NET

Applications communicate with a database, firstly, to retrieve the data stored there and present it

in a user-friendly way, and secondly, to update the database by inserting, modifying and deleting data.

Microsoft ActiveX Data Objects.Net (ADO.Net) is a model, a part of the .Net framework that is

used by the .Net applications for retrieving, accessing and updating data.

ADO.Net object model is nothing but the structured process flow through various components. The

object model can be pictorially described as −

 Datasets store data in a disconnected cache and the application retrieves data from it.

 Data readers provide data to the application in a read-only and forward-only mode.

Data Provider:

A data provider is used for connecting to a database, executing commands and retrieving data,

storing it in a dataset, reading the retrieved data and updating the database.

The data provider in ADO.Net consists of the following four objects −

Sr.No. Objects & Description

1 Connection:This component is used to set up a connection with a data source.

2 Command:A command is a SQL statement or a stored procedure used to retrieve, insert, delete

or modify data in a data source.

3 DataReader:Data reader is used to retrieve data from a data source in a read-only and forward-

only mode.

4

DataAdapter:This is integral to the working of ADO.Net since data is transferred to and from

a database through a data adapter. It retrieves data from a database into a dataset and updates

the database. When changes are made to the dataset, the changes in the database are actually

done by the data adapter.

There are following different types of data providers included in ADO.Net

 The .Net Framework data provider for SQL Server - provides access to Microsoft SQL Server.

 The .Net Framework data provider for OLE DB - provides access to data sources exposed by using OLE

DB.

 The .Net Framework data provider for ODBC - provides access to data sources exposed by ODBC.

 The .Net Framework data provider for Oracle - provides access to Oracle data source.

 The EntityClient provider - enables accessing data through Entity Data Model (EDM) applications.

DataSet

DataSet is an in-memory representation of data.

It is a disconnected, cached set of records that are retrieved from a database.

When a connection is established with the database, the data adapter creates a dataset and stores

data in it.

 After the data is retrieved and stored in a dataset, the connection with the database is closed.

This is called the 'disconnected architecture'. The dataset works as a virtual database containing

tables, rows, and columns.

The DataSet class is present in the System.Data namespace. The following table describes all the

components of DataSet −

Components & Description

DataTableCollection:It contains all the tables retrieved from the data source.

DataRelationCollection:It contains relationships and the links between tables in a data set.

ExtendedProperties:It contains additional information, like the SQL statement for retrieving data, time

of retrieval, etc.

DataTable:It represents a table in the DataTableCollection of a dataset. It consists of the DataRow and

DataColumn objects. The DataTable objects are case-sensitive.

DataRelation:It represents a relationship in the DataRelationshipCollection of the dataset. It is used to

relate two DataTable objects to each other through the DataColumn objects.

DataRowCollection:It contains all the rows in a DataTable.

DataView:It represents a fixed customized view of a DataTable for sorting, filtering, searching, editing

and navigation.

PrimaryKey:It represents the column that uniquely identifies a row in a DataTable.

DataRow:It represents a row in the DataTable. The DataRow object and its properties and methods are

used to retrieve, evaluate, insert, delete, and update values in the DataTable. The NewRow method is

used to create a new row and the Add method adds a row to the table.

DataColumnCollection:It represents all the columns in a DataTable.

DataColumn:It consists of the number of columns that comprise a DataTable.

OVERVIEW OF ADO.NET OBJECTS:

ADO.NET is designed to help developers work efficiently with multi-tier databases, across intranet or

Internet scenarios.

The ADO.NET object model consists of two key components as follows:

 Connected model (.NET Data Provider - a set of components including the Connection, Command,

DataReader, and DataAdapter objects)

 Disconnected model (DataSet).

Connection: The Connection object is the first component of ADO.NET. The connection object opens a

connection to your data source. All of the configurable aspects of a database connection are represented

in the Connection object, which includes ConnectionString and ConnectionTimeout. Connection object

helps in accessing and manipulating a database. Database transactions are also dependent upon the

Connection object.

In ADO.NET the type of the Connection is depended on what Database system you are working with.

The following are the commonly used connections in the ADO.NET

 SqlConnection

 OleDbConnection

 OdbcConnection

Command: The Command object is used to perform an action on the data source. Command object can

execute stored procedures and T-SQL commands. You can execute SQL queries to return data in a

DataSet or a DataReader object. Command object performs the standard Select, Insert, Delete, and

Update T-SQL operations.

DataReader: The DataReader is built as a way to retrieve and examine the rows returned in response to

your query as quickly as possible. No DataSet is created; in fact, no more than one row of information

from the data source is in memory at a time.

DataAdapter: The DataAdapter takes the results of a database query from a Command object and

pushes them into a DataSet using the DataAdapter.Fill() method.

DataAdapter object works in a connected model. DataAdapter performs the five following steps:

1. Create/open the connection

2. Fetch the data as per command specified

3. Generate XML file of data

4. Fill data into DataSet.

5. Close connection.

Command Builder: It is used to save changes made in an in-memory cache of data on the backend. The

work of Command Builder is to generate Command as per changes in DataRows. Command Builder

generates command on basis of row state. There is a five-row state:

1. Unchanged

2. Added

3. Deleted

4. Modified

5. Detached

Command Builder works on add, delete, and modified row state only.

Transaction: The Transaction object is used to execute the backend transaction. Transactions are used to

ensure that multiple changes to database rows occur as a single unit of work.

Parameters: Parameter object is used to solve the SQL Injection attack problem while dealing with the

user input parameters. Parameter object allows passing parameters into a Command object the Parameter

class allows you to quickly put parameters into a query without string concatenation.

CREATING A NEW DATA CONNECTION

The .Net Framework provides two types of Connection classes −

 SqlConnection − designed for connecting to Microsoft SQL Server.

 OleDbConnection − designed for connecting to a wide range of databases, like Microsoft Access and

Oracle.

 Select TOOLS → Connect to Database

Select a server name and the database name in the Add Connection dialog box

 Click on the Test Connection button to check if the connection succeeded.

 Add a DataGridView on the form.

 Click on the Choose Data Source combo box.

 Click on the Add Project Data Source link.

 This opens the Data Source Configuration Wizard.

 Select Database as the data source type

 Choose DataSet as the database model.

 Choose the connection already set up.

 Save the connection string.

 Choose the database object, Customers table in our example, and click the Finish button.

 Select the Preview Data link to see the data in the Results grid −

When the application is run using Start button available at the Microsoft Visual Studio tool bar, it will

show the following window −

CREATING A DATASET:

A dataset is a set of objects that store data from a database in memory and support change

tracking to enable create, read, update, and delete (CRUD) operations on that data without the need to be

always connected to the database.

1. Open your project in Visual Studio, and then choose Project > Add New Data Source to start the Data

Source Configuration Wizard.

2. Choose the type of data source to which you'll be connecting.

3. Choose the database or databases that will be the data source for your dataset.

4. Choose the tables (or individual columns), stored procedures, functions, and views from the database that

you want to be represented in the dataset.

5. Click Finish.

The dataset appears as a node in Solution Explorer.

6. Click the dataset node in Solution Explorer to open the dataset in the DataSet Designer. Each table in

the dataset has an associated TableAdapter object, which is represented at the bottom. The table adapter

is used to populate the dataset and optionally to send commands to the database.

7. Click a table, table adapter, or column name in a table to see its properties in the Properties window.

You can modify some of the values here. Just remember that you are modifying the dataset, not the

source database.

8. You can add new tables or table adapters to the dataset, or add new queries for existing table adapters, or

specify new relations between tables by dragging those items from the Toolbox tab. This tab appears

when the DataSet Designer is in focus.

ADDING A TABLE TO A DATASET

To define the structure, or schema, of your new DataSet. It’s time to add a table to it.

Inside that table, define three columns: one for the last name of each person in your address book, the

second for the first name, and the third for an auto incrementing primary key.

1. Right-click the DataSet1 icon from the previous example in the tray, and choose Properties.

The Properties window appears, showing the properties of DataSet1.

2. In the Properties window, change the Name property (not the DataSetName property) of DataSet1 to

dsAddresses.

The DataSet icon in the tray changes to display its new name. (Behind the scenes, VB.NET also changes

the name in the source code that it writes automatically to define the contents of your form.)

3. In the Properties window, click the Tables property and then click the ellipsis (…).

The Tables Collection Editor appears.

4. In the Tables Collection Editor, click the Add button.

The table’s properties appears.

5. Change the Name property (not the TableName property) to Friends.

VB.NET again changes the source code behind the scenes. You don’t have to worry about these details

— just relax and know that VB.NET knows how to write the code that defines your new DataSet’s

schema.

6. In the Properties list of the Tables Collection Editor, click Columns and then click the ellipsis.

The Columns Collection Editor dialog box appears.

7. In the Columns Collection Editor, click the Add button.

You can now define a new column and its properties. Note that the DataType property for all columns

defaults to the string (text) type, although you can change it. This is the data type that you want for the

LastName and FirstName columns.

8. Change the Name property (not the ColumnName property) to LastName. (The name defaults to

DataColumn1.)

9. Click the Add button.

Column2 is now created.

10. Change this column’s Name property to FirstName.

11. Click the Add button.

Column3 is now created.

12. Change this column’s Name property to Key, and its ReadOnly property to True.

With the ReadOnly property True, nobody can write (change) any of the data in this column. That’s what

you want; it’s supposed to be looked at (read) only.

13. Double-click the Unique property.

The property changes from False to True. Now the DataSet refuses to permit two rows to contain

identical data in the Key column. In addition, as long as this property is True, you can’t use the Remove

button in the Columns Collection Editor dialog box to delete the column.

14. Double-click the AutoIncrement property.

The property changes from False to True. Now the DataSet automatically increments (increases) the

number in this column by one for each row. Notice that when you double-clicked this property, VB.NET

was wise enough to change this column’s DataType property from String to Integer. After all, you want

ordinary numbers (1, 2, 3, 4, and so on) in this column, not text. Text can’t be incremented.

15. Click the Close button twice.

The Columns Collection Editor and the Tables Collection Editor close.

POPULATING A DATASET FROM A DATAADAPTER

The ADO.NET DataSet is a memory-resident representation of data that provides a consistent

relational programming model independent of the data source.

The DataSet represents a complete set of data that includes tables, constraints, and relationships

among the tables.

The SelectCommand property of the DataAdapter is a Command object that retrieves data from

the data source.

The InsertCommand, UpdateCommand, and DeleteCommand properties of the DataAdapter are

Command objects that manage updates to the data in the data source according to modifications made to

the data in the DataSet.

These properties are covered in more detail in Updating Data Sources with DataAdapters.

The Fill method of the DataAdapter is used to populate a DataSet with the results of the

SelectCommand of the DataAdapter.

Fill takes as its arguments a DataSet to be populated, and a DataTable object, or the name of the

DataTable to be filled with the rows returned from the SelectCommand.

vb

// Assumes that connection is a valid SqlConnection object.

string queryString =

 "SELECT CustomerID, CompanyName FROM dbo.Customers";

https://docs.microsoft.com/en-us/dotnet/api/system.data.dataset
https://docs.microsoft.com/en-us/dotnet/framework/data/adonet/updating-data-sources-with-dataadapters

SqlDataAdapter adapter = new SqlDataAdapter(queryString, connection);

DataSet customers = new DataSet();

adapter.Fill(customers, "Customers");

Multiple Result Sets

If the DataAdapter encounters multiple result sets, it creates multiple tables in the DataSet.

 The tables are given an incremental default name of TableN, starting with "Table" for Table0.

If a table name is passed as an argument to the Fill method, the tables are given an incremental

default name of TableNameN, starting with "TableName" for TableName0.

POPULATING A DATASET FROM MULTIPLE DATAADAPTERS

Any number of DataAdapter objects can be used with a DataSet. Each DataAdapter can be used

to fill one or more DataTable objects and resolve updates back to the relevant data source.

Data Relation and Constraint objects can be added to the DataSet locally, which enables you to

relate data from dissimilar data sources.

SqlDataAdapter custAdapter = new SqlDataAdapter("SELECT * FROM dbo.Customers",

customerConnection);

OleDbDataAdapter ordAdapter = new OleDbDataAdapter(

 "SELECT * FROM Orders", orderConnection);

 DataSet customerOrders = new DataSet();

 custAdapter.Fill(customerOrders, "Customers");

ordAdapter.Fill(customerOrders, "Orders");

DataRelation relation = customerOrders.Relations.Add("CustOrders",

 customerOrders.Tables["Customers"].Columns["CustomerID"],

 customerOrders.Tables["Orders"].Columns["CustomerID"]);

DISPLAY DATA IN A DATAGRID

Refer lab exercise program…..

SELECTING A DATA PROVIDERS

A .NET Framework data provider is used for connecting to a database, executing commands, and

retrieving results.

.NET Framework data providers are lightweight, creating a minimal layer between the data source

and code, increasing performance without sacrificing functionality.

The following table lists the data providers that are included in the .NET Framework.

.NET Framework data

provider

Description

.NET Framework Data

Provider for SQL Server

Provides data access for Microsoft SQL Server. Uses the

System.Data.SqlClient namespace.

.NET Framework Data

Provider for OLE DB

For data sources exposed by using OLE DB. Uses the System.Data.OleDb

namespace.

.NET Framework Data

Provider for ODBC

For data sources exposed by using ODBC. Uses the System.Data.Odbc

namespace.

.NET Framework Data

Provider for Oracle

For Oracle data sources. The .NET Framework Data Provider for Oracle

supports Oracle client software version 8.1.7 and later, and uses the

System.Data.OracleClient namespace.

EntityClient Provider Provides data access for Entity Data Model (EDM) applications. Uses the

System.Data.EntityClient namespace.

.NET Framework Data

Provider for SQL Server

Compact 4.0.

Provides data access for Microsoft SQL Server Compact 4.0. Uses the

System.Data.SqlServerCe namespace.

DATA VIEW

A DataView represents a view a DataSet object.

You can set filters on the data or sort on data in the DataSet through different DataViews and

produce different views of the data

 private void DemonstrateDataView()

 {

 // Create one DataTable with one column.

https://docs.microsoft.com/en-us/dotnet/api/system.data.sqlclient
https://docs.microsoft.com/en-us/dotnet/api/system.data.oledb
https://docs.microsoft.com/en-us/dotnet/api/system.data.odbc
https://docs.microsoft.com/en-us/dotnet/api/system.data.oracleclient
https://docs.microsoft.com/en-us/dotnet/api/system.data.entityclient
https://docs.microsoft.com/previous-versions/sql/compact/sql-server-compact-4.0/ec4st0e3(v=vs.100)

 DataTable table = new DataTable("table");

 DataColumn colItem = new DataColumn("item",

 Type.GetType("System.String"));

 table.Columns.Add(colItem);

 // Add five items.

 DataRow NewRow;

 for(int i = 0; i <5; i++)

 {

 NewRow = table.NewRow();

 NewRow["item"] = "Item " + i;

 table.Rows.Add(NewRow);

 }

 // Change the values in the table.

 table.AcceptChanges();

 table.Rows[0]["item"]="cat";

 table.Rows[1]["item"] = "dog";

 // Print current table values.

 PrintTableOrView(table,"Current Values in Table");

 firstView.RowStateFilter=DataViewRowState.ModifiedOriginal;

 PrintTableOrView(firstView,"First DataView: ModifiedOriginal");

 }

DATA BINDING

Data binding, in the context of .NET, is the method by which controls on a user interface (UI) of a client

application are configured to fetch from, or update data into, a data source, such as a database or XML

document.

Many database management systems (DBM) could indirectly access the data source through their

application programming interface (API) without any flexibility in controlling the data binding process.

The development of Web applications is simplified by providing data binding capability to Web pages

using .NET server side Web controls.

Simple data binding is the process of binding a control, such as a TextBox or a Label control, to a value

in a dataset.

The dataset value can be bound to the control by using the properties of the control. A Textbox control is

used for simple binding.

While simple data binding involves binding a control to a dataset value, complex data binding is the

process of binding a component to display multiple values for a column from the dataset rows.

The DataGrid, Listbox, and ComboBox controls are used for complex binding.

i) Simple data binding

Simple data binding allows you to bind a control to a single data element. The most common use of

simple data binding involves binding a single data element, such as the value of a column in a table, to a

control on a form. You use this type of data binding for controls that show only one value. Uses of simple

data binding include binding data to text boxes and labels.

Steps

1. Press F4 to open the properties window.

2. Select the first TextBox to display its properties window.

3. Expand the (DataBindings) property.

4. Select the text property to enable the drop-down list. Click the drop-down list.

5. Add a project data source in the drop-down list.

6. Create a connection with the AdventureWorks database and select the HumanResources.employee table.

7. Select the first TextBox. Expand "Other data source" ---> "Project data source" -->

"AdventureWorksdataset" --> "Employee" --> "EmloyeeId".

8. Select the second TextBox. Expand the DataBinding property then select "Text" ---> "Employee Binding

source" then select column(National ID) from the list.

9. Similarly, bind TextBox3 and TextBox4 with the column contactid and Login ID.

10. Press F5. If everything goes well, you will see the following output:

Here is one problem with the preceding. Every time you run your project, you are able to see only one

record. So how to solve this problem?

We can solve that problem using the BindingNavigator Control. For every data source that is bound to a

Windows Forms control, there exists a BindingNavigator control. The BindingNavigator control handles

the binding to the data by keeping the pointer to the item in the record list current.

Implementing BindingNavigator

1. Drag and drop a BindingNavigator control from the Toolbox.

2. Select BindingNavigator1; this will display the properties window.

3. Select the bindingSource property from the properties Window to enable the corresponding drop-down

list.

4. Select employeeBindingSource from the Drop-Down list as shown in the following figure.

 5. Execute the Windows Forms form and verify the output. The Employee Details will be displayed as

shown in the following figure.

The following table describes the various symbols and their function in the BindingNavigator control:

 ii) Complex Data Binding

Complex data binding allows you to bind more than one data element to control. Using the column

example, complex data binding involves binding more than one column or row from the underlying

record source. Controls that support complex data binding include data grid controls, combo boxes, and

list boxes.

 Let's see complex data binding with a DataGridView:

1. Drag and drop a DataGridView from the Toolbox under the Data tab.

 2. Click on the DataGridView task pop-up menu as shown in the following figure.

3. Select the choose Data Source drop-down list and then select the Add Project Data Source from the

DataGridView task pop-up menu as shown in the following figure.

 4. In the database configuration wizard select database and click on "Next" as shown in the following

figure.

 5. After clicking on the Next button you will get the following output.

 6. Click on "New Connection" to create a new connection to your data source.

 To add a connection:

o Provide the server name (in my case it is (.))

o If your server is not using Windows authentication then select "Use SQL Server authentication".

o Provide the username and password.

o Provide the database name AdventureWorks from the Select or enter a database name drop-down list.

o Click on the Test Connection Button. If everything goes well you will see a message box saying thatTest

the connection succeeded as shown in the following figure.

2. Click the OK button.

3. Click the OK button on the Add Connection dialog box.

4. Select Yes, Include sensitive data in the connection string, and click the "Next" button in the DataSource

configuration wizard. You will get a page as displayed in the following figure.

 5. Ensure that the Yes, save the connection as the check box is selected and the

AdventureWorksConnection string appears in the TextBox.

 6. Click the "Next" button. The Choose Your Database Objects page is displayed as shown in the

following figure.

7. Expand the table node and select the HumanResources.Employee table is shown in the following

figure.

 8. . Click the "Finish" button. The form is displayed, as shown in the following figure.

 9. Press F5 to execute the application. You will get the following output.

