
PYTHON FOR DATA SCIENCE – 23PCS2CC6

STAFF : DN

 I M.Sc CS

UNIT II

TOPIC 1: SEQUENCES

Sequences are an object type in Python that allows the user to store data one after

each other. Operations can be performed on a sequence, to examined and

manipulated the stored items. There are several different types of sequence

objects in Python.

A sequence is a positionally ordered collection of items. And you can refer to any

item in the sequence by using its index number e.g., s[0] and s[1].

In Python, the sequence index starts at 0, not 1. So the first element is s[0] and

the second element is s[1]. If the sequence s has n items, the last item is s[n-1].

Python has the following built-in sequence types: lists, bytearrays, strings, tuples,

range, and bytes. Python classifies sequence types as mutable and immutable.

The mutable sequence types are lists and bytearrays while the immutable

sequence types are strings, tuples, range, and bytes.

A sequence can be homogeneous or heterogeneous. In a homogeneous sequence,

all elements have the same type. For example, strings are homogeneous

sequences where each element is of the same type.

Lists, however, are heterogeneous sequences where you can store elements of

different types including integer, strings, objects, etc.

In general, homogeneous sequence types are more efficient than heterogeneous

in terms of storage and operations.

SYNTAX

len(seq)

The following example uses the len function to get the number of items in

the cities list:

https://www.pythontutorial.net/python-basics/python-list/
https://www.pythontutorial.net/python-basics/python-string/
https://www.pythontutorial.net/python-basics/python-tuples/
https://www.pythontutorial.net/advanced-python/python-mutable-and-immutable/

cities = ['San Francisco', 'New York', 'Washington DC']

print(len(cities))

TOPIC 2: INTRODUCTION TO LIST

Lists are used to store multiple items in a single variable. Lists are one of 4 built-

in data types in Python used to store collections of data, the other 3 are Tuple,

Set, and Dictionary, all with different qualities and usage.

Lists are created using square brackets:

Example Create a List:

 thislist = ["apple", "banana", "cherry"]

 print(thislist)

List Items List items are ordered, changeable, and allow duplicate values.

 List items are indexed, the first item has index [0], the second item has index [1]

etc. Ordered When we say that lists are ordered, it means that the items have a

defined order, and that order will not change.

 If you add new items to a list, the new items will be placed at the end of the list

Changeable The list is changeable, meaning that we can change, add, and remove

items in a list after it has been created.

Allow Duplicates Since lists are indexed, lists can have items with the same value:

 Example Lists allow duplicate values:

thislist = ["apple", "banana", "cherry", "apple", "cherry"]

 print(thislist)

List Length To determine how many items a list has, use the len() function:

Example

 Print the number of items in the list:

thislist = ["apple", "banana", "cherry"]

print(len(thislist))

List Items - Data Types List items can be of any data type:

Example

String, int and boolean data types:

 list1 = ["apple", "banana", "cherry"] list2 = [1, 5, 7, 9, 3]

 list3 = [True, False, False]

 A list can contain different data types:

Example

 A list with strings, integers and boolean values:

list1 = ["abc", 34, True, 40, "male"] type()

 Example

 What is the data type of a list?

mylist = ["apple", "banana", "cherry"]

print(type(mylist))

TOPIC 3: LIST SLICING

In Python, list slicing is a common practice and it is the most used technique for

programmers to solve efficient problems. Consider a Python list, in order to

access a range of elements in a list, you need to slice a list. One way to do this

is to use the simple slicing operator i.e. colon(:). With this operator, one can

specify where to start the slicing, where to end, and specify the step. List slicing

returns a new list from the existing list.

Python List Slicing Syntax

The format for list slicing is of Python List Slicing is as follows:

Lst[Initial : End : IndexJump]

If Lst is a list, then the above expression returns the portion of the list from

index Initial to index End, at a step size IndexJump.

Indexing in Python List

Indexing is a technique for accessing the elements of a Python List. There are

various ways by which we can access an element of a list.

https://www.geeksforgeeks.org/python-programming-language/
https://www.geeksforgeeks.org/python-lists/

Positive Indexes

In the case of Positive Indexing, the first element of the list has the index number

0, and the last element of the list has the index number N-1, where N is the total

number of elements in the list (size of the list).

Positive Indexing of a Python List

Example:

In this example, we will display a whole list using positive index slicing.

Initialize list

Lst = [50, 70, 30, 20, 90, 10, 50]

Display list

print(Lst[::])

Output:

[50, 70, 30, 20, 90, 10, 50]

Negative Indexes

The below diagram illustrates a list along with its negative indexes. Index -1

represents the last element and -N represents the first element of the list, where

N is the length of the list.

Negative Indexing of a Python List

Example:

In this example, we will access the elements of a list using negative indexing.

Initialize list

Lst = [50, 70, 30, 20, 90, 10, 50]

Display list

print(Lst[-7::1])

Output:

[50, 70, 30, 20, 90, 10, 50]

Slicing

As mentioned earlier list slicing in Python is a common practice and can be used

both with positive indexes as well as negative indexes. The below diagram

illustrates the technique of list slicing:

Python List Slicing

Example:

In this example, we will transform the above illustration into Python code.

 Python3

Initialize list

Lst = [50, 70, 30, 20, 90, 10, 50]

Display list

print(Lst[1:5])

Output:

[70, 30, 20, 90]

Examples of List Slicing in Python

Example 1: Leaving any argument like Initial, End, or IndexJump blank will

lead to the use of default values i.e. 0 as Initial, length of the list as End, and 1

as IndexJump.

Initialize list

List = [1, 2, 3, 4, 5, 6, 7, 8, 9]

Show original list

print("Original List:\n", List)

print("\nSliced Lists: ")

Display sliced list

print(List[3:9:2])

Display sliced list

print(List[::2])

Display sliced list

print(List[::])

Output:

Original List:

 [1, 2, 3, 4, 5, 6, 7, 8, 9]

Sliced Lists:

[4, 6, 8]

[1, 3, 5, 7, 9]

[1, 2, 3, 4, 5, 6, 7, 8, 9]

TOPIC 4: FINDING ITEMS IN A LIST USING IN OPERATOR

To simply check if a list contains a particular item in Python you can use

the in operator like this:

fruit = ['apple', 'banana', 'orange', 'lime']

if 'lime' in fruit:

 print('Lime found!')

OUTPUT

 Lime found!

TOPIC 5: LIST METHODS AND USEFUL BUILT-IN FUNCTIONS

• Python List index()

• Python List append()
• Python List extend()
• Python List insert()

• Python List remove()

• Python List count()

• Python List pop()
• Python List reverse()

• Python List sort()

• Python List copy() •

• Python List clear()

• Python LIST index()

 List index starts from 0.

The index() method returns the index of the specified element in the list.

Example

animals = ['cat', 'dog', 'rabbit', 'horse']

index=animals.index(‘dog’)

output

1

Python List append()

The append() method adds an item to the end of the list.

Example

currencies = ['Dollar', 'Euro', 'Pound']

append 'Yen' to the list

https://www.programiz.com/python-programming/methods/list/index
https://www.programiz.com/python-programming/methods/list/index
https://www.programiz.com/python-programming/methods/list/append
https://www.programiz.com/python-programming/methods/list/append
https://www.programiz.com/python-programming/methods/list/extend
https://www.programiz.com/python-programming/methods/list/extend
https://www.programiz.com/python-programming/methods/list/insert
https://www.programiz.com/python-programming/methods/list/insert
https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/methods/list/remove
https://www.programiz.com/python-programming/methods/list/count
https://www.programiz.com/python-programming/methods/list/count
https://www.programiz.com/python-programming/methods/list/pop
https://www.programiz.com/python-programming/methods/list/pop
https://www.programiz.com/python-programming/methods/list/reverse
https://www.programiz.com/python-programming/methods/list/reverse
https://www.programiz.com/python-programming/methods/list/sort
https://www.programiz.com/python-programming/methods/list/sort
https://www.programiz.com/python-programming/methods/list/copy
https://www.programiz.com/python-programming/methods/list/copy
https://www.programiz.com/python-programming/methods/list/clear
https://www.programiz.com/python-programming/methods/list/clear

currencies.append('Yen')

 print(currencies)

Output: ['Dollar', 'Euro', 'Pound', 'Yen']

Python List extend()

The extend() method adds all the elements of an iterable (list, tuple, string etc.) to the end of the list.

Example

create a list prime_numbers

= [2, 3, 5]

 # create another list

numbers = [1, 4]

add all elements of prime_numbers to numbers

numbers.extend(prime_numbers)

print('List after extend():', numbers)

Output: List after extend(): [1, 4, 2, 3, 5]

'o' is inserted at index 3 (4th position)

vowel.insert(3, 'o')

print('List:', vowel)

Output: List: ['a', 'e', 'i', 'o', 'u']

Python List remove()

The remove() method removes the first matching element (which is passed as an argument) from the list.

Example

create a list prime_numbers = [2, 3,

5, 7, 9, 11]

remove 9 from the list

prime_numbers.remove(9)

print('Updated List: ', prime_numbers)

Output: Updated List: [2, 3, 5, 7, 11]

Python List count()

The count() method returns the number of times the specified element appears in the list.

Example

create a list numbers = [2, 3, 5,

2, 11, 2, 7]

check the count of 2

count =

numbers.count(2)

print('Count of 2:', count)

Output: Count of 2: 3

Python List pop()

The pop() method removes the item at the given index from the list and returns the removed item.

Example

create a list of prime numbers prime_numbers = [2, 3, 5, 7]

remove the element at index 2 removed_element = prime_numbers.pop(2)

 print('Removed Element:', removed_element) print('Updated List:',

prime_numbers)

Output:

Removed Element: 5

Updated List: [2, 3, 7]

Python List reverse()

The reverse() method reverses the elements of the list.

Example

create a list of prime numbers

prime_numbers = [2, 3, 5, 7]

reverse the order of list elements

prime_numbers.reverse()

print('Reversed List:', prime_numbers)

Output: Reversed List: [7, 5, 3, 2]

Python List sort()

The sort() method sorts the items of a list in ascending or descending order.

Example

prime_numbers = [11, 3, 7, 5, 2]

sorting the list in ascending order

prime_numbers.sort()

print(prime_numbers)

Output: [2, 3, 5, 7, 11]

Python List copy()

The copy() method returns a shallow copy of the list.

Example

mixed list

prime_numbers p = [2, 3,

5]

copying a list

numbers =

prime_numbers.copy()

print('Copied List:', numbers)

Output: Copied List: [2, 3, 5]

Python List clear()

The clear() method removes all items from the list.

Example

prime_numbers = [2, 3, 5, 7, 9, 11]

 # remove all elements

prime_numbers.clear(

)

Updated prime_numbers

List

print('List after clear():', prime_numbers)

Output: List after clear(): []

TOPIC 6: COPYING LISTS

You cannot copy a list simply by typing list2 = list1, because: list2 will only be

a reference to list1, and changes made in list1 will automatically also be made

in list2.

There are ways to make a copy, one way is to use the built-in List method copy().

ExampleGet your own Python Server

Make a copy of a list with the copy() method:

thislist = ["apple", "banana", "cherry"]

mylist = thislist.copy()

print(mylist)

OUTPUT

https://www.w3schools.com/python/python_server.asp

Apple banana cherry

TOPIC 7: PROCESSING LIST

In Python, the sequence of various data types is stored in a list. A list is a

collection of different kinds of values or items. Since Python lists are mutable,

we can change their elements after forming. The comma (,) and the square

brackets [enclose the List's items] serve as separators.

Although six Python data types can hold sequences, the List is the most common

and reliable form. A list, a type of sequence data, is used to store the collection

of data. Tuples and Strings are two similar data formats for sequences.

Lists written in Python are identical to dynamically scaled arrays defined in other

languages, such as Array List in Java and Vector in C++. A list is a collection of

items separated by commas and denoted by the symbol [].

Characteristics of Lists

The characteristics of the List are as follows:

o The lists are in order.

o The list element can be accessed via the index.

o The mutable type of List is

o The rundowns are changeable sorts.

o The number of various elements can be stored in a list.

1. # a simple list

2. list1 = [1, 2, "Python", "Program", 15.9]

3. list2 = ["Amy", "Ryan", "Henry", "Emma"]

4.

5. # printing the list

6. print(list1)

7. print(list2)

8.

9. # printing the type of list

10. print(type(list1))

11. print(type(list2))

Output:

[1, 2, 'Python', 'Program', 15.9]

['Amy', 'Ryan', 'Henry', 'Emma']

< class ' list ' >

< class ' list ' >

Updating List Values

Due to their mutability and the slice and assignment operator's ability to update

their values, lists are Python's most adaptable data structure. Python's append()

and insert() methods can also add values to a list.

Consider the following example to update the values inside the List.

1. # updating list values

2. list = [1, 2, 3, 4, 5, 6]

3. print(list)

4. # It will assign value to the value to the second index

5. list[2] = 10

6. print(list)

7. # Adding multiple-element

8. list[1:3] = [89, 78]

9. print(list)

10. # It will add value at the end of the list

11. list[-1] = 25

12. print(list)

Output:

[1, 2, 3, 4, 5, 6]

[1, 2, 10, 4, 5, 6]

[1, 89, 78, 4, 5, 6]

[1, 89, 78, 4, 5, 25]

The list elements can also be deleted by using the del keyword. Python also

provides us the remove() method if we do not know which element is to be

deleted from the list.

Python List Operations

The concatenation (+) and repetition (*) operators work in the same way as they

were working with the strings. The different operations of list are

1. Repetition

2. Concatenation

3. Length

4. Iteration

5. Membership

Let's see how the list responds to various operators.

1. Repetition

The redundancy administrator empowers the rundown components to be rehashed

on different occasions.

Code

1. # repetition of list

2. # declaring the list

3. list1 = [12, 14, 16, 18, 20]

4. # repetition operator *

5. l = list1 * 2

6. print(l)

Output:

[12, 14, 16, 18, 20, 12, 14, 16, 18, 20]

2. Concatenation

It concatenates the list mentioned on either side of the operator.

Code

1. # concatenation of two lists

2. # declaring the lists

3. list1 = [12, 14, 16, 18, 20]

4. list2 = [9, 10, 32, 54, 86]

5. # concatenation operator +

6. l = list1 + list2

7. print(l)

Output:

[12, 14, 16, 18, 20, 9, 10, 32, 54, 86]

3. Length

It is used to get the length of the list

Code

1. # size of the list

2. # declaring the list

3. list1 = [12, 14, 16, 18, 20, 23, 27, 39, 40]

4. # finding length of the list

5. len(list1)

Output:

9

4. Iteration

The for loop is used to iterate over the list elements.

Code

1. # iteration of the list

2. # declaring the list

3. list1 = [12, 14, 16, 39, 40]

4. # iterating

5. for i in list1:

6. print(i)

Output:

12

14

16

39

40

5. Membership

It returns true if a particular item exists in a particular list otherwise false.

Code

1. # membership of the list

2. # declaring the list

3. list1 = [100, 200, 300, 400, 500]

4. # true will be printed if value exists

5. # and false if not

6.

7. print(600 in list1)

8. print(700 in list1)

9. print(1040 in list1)

10.

11. print(300 in list1)

12. print(100 in list1)

13. print(500 in list1)

Output:

False

False

False

True

True

True

Iterating a List

A list can be iterated by using a for - in loop. A simple list containing four strings,

which can be iterated as follows.

Code

1. # iterating a list

2. list = ["John", "David", "James", "Jonathan"]

3. for i in list:

4. # The i variable will iterate over the elements of the List and contains each el

ement in each iteration.

5. print(i)

Output:

John

David

James

Jonathan

TOPIC 8: TWO DIMENSIONAL LIST

In the case of a list, our old-fashioned one-dimensional list looks like this:

 myList = [0,1,2,3]

And a two-dimensional list looks like this:

 myList = [[0,1,2,3], [3,2,1,0], [3,5,6,1], [3,8,3,4]]

For our purposes, it is better to think of the two-dimensional list as a matrix. A

matrix can be thought of as a grid of numbers, arranged in rows and columns,

kind of like a bingo board. We might write the two-dimensional list out as follows

to illustrate this point:

 myList = [[0, 1, 2, 3],

 [3, 2, 1, 0],

 [3, 5, 6, 1],

 [3, 8, 3, 4]]

EXAMPLE

myList= [[0, 1, 2]

 [3, 4, 5]

 [6, 7, 8]]

for i in len(myList):

 for j in len(myList[0]):

 print(myList[i][j])

OUTPUT

[[0, 1, 2]

 [3, 4, 5]

 [6, 7, 8]]

TOPIC 9: TUPLES

A comma-separated group of items is called a Python triple. The ordering, settled

items, and reiterations of a tuple are to some degree like those of a rundown, but

in contrast to a rundown, a tuple is unchanging.

The main difference between the two is that we cannot alter the components of a

tuple once they have been assigned. On the other hand, we can edit the contents

of a list.

Example

("Suzuki", "Audi", "BMW"," Skoda ") is a tuple.

 Features of Python Tuple

o Tuples are an immutable data type, meaning their elements cannot be

changed after they are generated.

o Each element in a tuple has a specific order that will never change because

tuples are ordered sequences.

Forming a Tuple:

All the objects-also known as "elements"-must be separated by a comma,

enclosed in parenthesis (). Although parentheses are not required, they are

recommended.

 (dictionary, string, float, list, etc.), can be contained in a tuple.

Python program to show how to create a tuple

Creating an empty tuple

empty_tuple = ()

print("Empty tuple: ", empty_tuple)

Creating tuple having integers

int_tuple = (4, 6, 8, 10, 12, 14)

print("Tuple with integers: ", int_tuple)

Creating a tuple having objects of different data types

mixed_tuple = (4, "Python", 9.3)

print("Tuple with different data types: ", mixed_tuple)

Creating a nested tuple

nested_tuple = ("Python", {4: 5, 6: 2, 8:2}, (5, 3, 5, 6))

print("A nested tuple: ", nested_tuple)

Output:

Empty tuple: ()

Tuple with integers: (4, 6, 8, 10, 12, 14)

Tuple with different data types: (4, 'Python', 9.3)

A nested tuple: ('Python', {4: 5, 6: 2, 8: 2}, (5, 3, 5, 6))

Parentheses are not necessary for the construction of multiples. This is known as

triple pressing.

Code

Python program to create a tuple without using parentheses

Creating a tuple

tuple_ = 4, 5.7, "Tuples", ["Python", "Tuples"]

Displaying the tuple created

print(tuple_)

Checking the data type of object tuple_

print(type(tuple_))

Trying to modify tuple_

try:

 tuple_[1] = 4.2

except:

 print(TypeError)

Output:

(4, 5.7, 'Tuples', ['Python', 'Tuples'])

<class 'tuple'>

<class 'TypeError'>

Accessing Tuple Elements

A tuple's objects can be accessed in a variety of ways.

Indexing

Indexing We can use the index operator [] to access an object in a tuple, where

the index starts at 0.

The indices of a tuple with five items will range from 0 to 4. An Index Error will

be raised assuming we attempt to get to a list from the Tuple that is outside the

scope of the tuple record. An index above four will be out of range in this

scenario.

Python program to show how negative indexing works in Python tuples

Creating a tuple

tuple_ = ("Python", "Tuple", "Ordered", "Collection")

Printing elements using negative indices

print("Element at -1 index: ", tuple_[-1])

print("Elements between -4 and -1 are: ", tuple_[-4:-1])

Output:

Element at -1 index: Collection

Elements between -4 and -1 are: ('Python', 'Tuple', 'Ordered')

Slicing

Tuple slicing is a common practice in Python and the most common way for

programmers to deal with practical issues. Look at a tuple in Python. Slice a tuple

to access a variety of its elements. Using the colon as a straightforward slicing

operator (:) is one strategy.

To gain access to various tuple elements, we can use the slicing operator colon

(:).

Code

Python program to show how slicing works in Python tuples

Creating a tuple

tuple_ = ("Python", "Tuple", "Ordered", "Immutable", "Collection", "Objects")

Using slicing to access elements of the tuple

print("Elements between indices 1 and 3: ", tuple_[1:3])

Using negative indexing in slicing

print("Elements between indices 0 and -4: ", tuple_[:-4])

Printing the entire tuple by using the default start and end values.

print("Entire tuple: ", tuple_[:])

Output:

Elements between indices 1 and 3: ('Tuple', 'Ordered')

Elements between indices 0 and -4: ('Python', 'Tuple')

Entire tuple: ('Python', 'Tuple', 'Ordered', 'Immutable', 'Collection', 'Objects')

Deleting a Tuple

A tuple's parts can't be modified, as was recently said. We are unable to eliminate

or remove tuple components as a result.

However, the keyword del can completely delete a tuple.

TOPIC 10: MANIPULATING STRINGS

You might have learned that you need to declare or type variables before you can

store anything in them. This is not necessary when working with strings in

Python. We can create a string simply by putting content wrapped with quotation

marks into it with an equal sign (=):

message = "Hello World"

String Operators: Adding and Multiplyingstring-operators-adding-and-

multiplying

A string is a type of object, one that consists of a series of characters. Python

already knows how to deal with a number of general-purpose and powerful

representations, including strings. One way to manipulate strings is by

using string operators. These operators are represented by symbols that you

likely associate with mathematics, such as +, -, *, /, and =. When used with

strings, they perform actions that are similar to, but not the same as, their

mathematical counterparts.

Concatenate concatenate

This term means to join strings together. The process is known

as concatenating strings and it is done using the plus (+) operator. Note that you

must be explicit about where you want blank spaces to occur by placing them

between single quotation marks also.

In this example, the string “message1” is given the content “hello world”.

message1 = 'hello' + ' ' + 'world'

print(message1)

-> hello world

Multiply multiply

If you want multiple copies of a string, use the multiplication (*) operator. In this

example, string message2a is given the content “hello” times three;

string message 2b is given content “world”; then we print both strings.

message2a = 'hello ' * 3

message2b = 'world'

print(message2a + message2b)

-> hello hello hello world

Append append

What if you want to add material to the end of a string successively? There is a

special operator for that (+=).

message3 = 'howdy'

https://programminghistorian.org/en/lessons/manipulating-strings-in-python#string-operators-adding-and-multiplying
https://programminghistorian.org/en/lessons/manipulating-strings-in-python#string-operators-adding-and-multiplying
https://programminghistorian.org/en/lessons/manipulating-strings-in-python#concatenate
https://programminghistorian.org/en/lessons/manipulating-strings-in-python#multiply
https://programminghistorian.org/en/lessons/manipulating-strings-in-python#append

message3 += ' '

message3 += 'world'

print(message3)

-> howdy world

String Methods: Finding, Changingstring-methods-finding-changing

In addition to operators, Python comes pre-installed with dozens of string

methods that allow you to do things to strings. Used alone or in combination,

these methods can do just about anything you can imagine to strings. The good

news is that you can reference a list of String Methods on the Python website,

including information on how to use each properly. To make sure that you’ve got

a basic grasp of string methods, what follows is a brief overview of some of the

more commonly used ones:

Length length

You can determine the number of characters in a string using len. Note that the

blank space counts as a separate character.

message4 = 'hello' + ' ' + 'world'

print(len(message4))

-> 11

Find find

You can search a string for a substring and your program will return the starting

index position of that substring. This is helpful for further processing. Note that

indexes are numbered from left to right and that the count starts with position 0,

not 1.

message5 = "hello world"

message5a = message5.find("worl")

print(message5a)

-> 6

If the substring is not present, the program will return a value of -1.

message6 = "Hello World"

message6b = message6.find("squirrel")

print(message6b)

-> -1

Lower Caselower-case

Sometimes it is useful to convert a string to lower case. For example, if we

standardize case it makes it easier for the computer to recognize that “Sometimes”

and “sometimes” are the same word.

https://programminghistorian.org/en/lessons/manipulating-strings-in-python#string-methods-finding-changing
https://docs.python.org/2/library/stdtypes.html#string-methods
https://programminghistorian.org/en/lessons/manipulating-strings-in-python#length
https://programminghistorian.org/en/lessons/manipulating-strings-in-python#find
https://programminghistorian.org/en/lessons/manipulating-strings-in-python#lower-case

message7 = "HELLO WORLD"

message7a = message7.lower()

print(message7a)

-> hello world

The opposite effect, raising characters to upper case, can be achieved by

changing .lower() to .upper().

Replace replace

If you need to replace a substring throughout a string you can do so with

the replace method.

message8 = "HELLO WORLD"

message8a = message8.replace("L", "pizza")

print(message8a)

-> HEpizzapizzaO WORpizzaD

Slice slice

If you want to slice off unwanted parts of a string from the beginning or end you

can do so by creating a substring. The same kind of technique also allows you to

break a long string into more manageable components.

message9 = "Hello World"

message9a = message9[1:8]

print(message9a)

-> ello Wo

You can substitute variables for the integers used in this example.

startLoc = 2

endLoc = 8

message9b = message9[startLoc: endLoc]

print(message9b)

-> llo Wo

This makes it much easier to use this method in conjunction with the find method

as in the next example, which checks for the letter “d” in the first six characters

of “Hello World” and correctly tells us it is not there (-1). This technique is much

more useful in longer strings – entire documents for example. Note that the

absence of an integer before the colon signifies we want to start at the beginning

of the string. We could use the same technique to tell the program to go all the

way to the end by putting no integer after the colon. And remember, index

positions start counting from 0 rather than 1.

message9 = "Hello World"

print(message9[:5].find("d"))

-> -1

https://programminghistorian.org/en/lessons/manipulating-strings-in-python#replace
https://programminghistorian.org/en/lessons/manipulating-strings-in-python#slice

There are lots more, but the string methods above are a good start. Note that in

this last example, we are using square brackets instead of parentheses. This

difference in syntax signals an important distinction. In Python, parentheses are

usually used to pass an argument to a function. So when we see something like

print(len(message7))

it means pass the string message7 to the function len then send the returned value

of that function to the print statement to be printed. If a function can be called

without an argument, you often have to include a pair of empty parentheses after

the function name anyway. We saw an example of that, too:

message7 = "HELLO WORLD"

message7a = message7.lower()

print(message7a)

-> hello world

This statement tells Python to apply the lower function to the

string message7 and store the returned value in the string message7a.

The square brackets serve a different purpose. If you think of a string as a

sequence of characters, and you want to be able to access the contents of the string

by their location within the sequence, then you need some way of giving Python

a location within a sequence. That is what the square brackets do: indicate a

beginning and ending location within a sequence as we saw when using

the slice method.

TOPIC 11: BASIC STRING OPERATIONS

What’s a String in Python?

A python string is a list of characters in an order. A character is anything

you can type on the keyboard in one keystroke, like a letter, a number, or a

backslash. Strings can also have spaces, tabs, and newline characters.

 ex

myStr="hello world"

We can also define an empty string that has 0 characters as shown below.

myStr=""

In python, every string starts with and ends with quotation marks i.e. single quotes

‘ ‘, double quotes ” ” or triple quotes “”” “””.

https://www.pythonforbeginners.com/basics/python-string-methods-for-string-manipulation

String Manipulation

Creating a string

i. Access Characters

ii. Finding length

iii. Finding a character

iv. Counting

v. String slicing

Create a String in Python

To create a string with given characters, you can assign the characters to a

variable after enclosing them in double quotes or single quotes as shown below.

word = "Hello World"

print(word)

Output:

Hello World

Access Characters in a String in Python

To access characters of a string, we can use the python indexing operator [] i.e.

square brackets to access characters in a string as shown below.

word = "Hello World"

print("The word is:",word)

letter=word[0]

print("The letter is:",letter)

Output:

The word is: Hello World

The letter is: H

https://www.pythonforbeginners.com/strings/string-indexing-in-python

Find Length of a String in Python

To find the length of a string in Python, we can use the len() function.

The len() function takes a string as input argument and returns the length of the

string as shown below.

word = "Hello World"

print("The string is:",word)

length=len(word)

print("The length of the string is:",length)

Output:

The string is: Hello World

The length of the string is: 11

Find a Character in a String in Python

To find the index of a character in a string, we can use the find() method.

word = "Hello World"

print("The string is:",word)

character="W"

print("The character is:",character)

position=word.find(character)

print("The position of the character in the string is:",position)

Output:

The string is: Hello World

The character is: W

The position of the character in the string is: 6

Count the Number of Spaces in a String in Python

Spaces are also characters. Hence, you can use the count() method count the

number of spaces in a string in Python.

myStr = "Count, the number of spaces"

https://www.pythonforbeginners.com/basics/position-of-a-character-in-a-string-in-python

print("The string is:",myStr)

character=" "

position=myStr.count(character)

print("The number of spaces in the string is:",position)

Output:

The string is: Count, the number of spaces

The number of spaces in the string is: 4

String Slicing in Python

To perform string manipulation in Python, you can use the syntax string_name[

start_index : end_index] to get a substring of a string.

word = "Hello World"

print word[0] #get one char of the word

print word[0:1] #get one char of the word (same as above)

 print word[0:3] #get the first three char

print word[:3] #get the first three char

print word[-3:] #get the last three char

print word[3:] #get all but the three first char

print word[:-3] #get all but the three last character word = "Hello World"

word[start:end] # items start through end-1 word[start:] # items start through the

rest of the list word[:end] # items from the beginning through end-1 word[:] # a

copy of the whole list

TOPIC 12: DICTIONARIES

thisdict = { "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

Dictionaries are used to store data values in key:value pairs.

A dictionary is a collection which is ordered*, changeable and do not allow

duplicates.

As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier, dictionaries are

unordered.

Dictionaries are written with curly brackets, and have keys and values:

Example

Create and print a dictionary:

thisdict = {

"brand": "Ford",

"model": "Mustang",

 "year": 1964

}

Print (thisdict)

Dictionary Items

Dictionary items are ordered, changeable, and does not allow duplicates.

Dictionary items are presented in key:value pairs, and can be referred to by using

the key name.

Example

Print the "brand" value of the dictionary:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964

}

print(thisdict["brand"])

Ordered or Unordered?

As of Python version 3.7, dictionaries are ordered. In Python 3.6 and earlier,

dictionaries are unordered.

When we say that dictionaries are ordered, it means that the items have a defined

order, and that order will not change.

Unordered means that the items does not have a defined order, you cannot refer

to an item by using an index.

Changeable

Dictionaries are changeable, meaning that we can change, add or remove items

after the dictionary has been created.

Duplicates Not Allowed

Dictionaries cannot have two items with the same key:

Example

Duplicate values will overwrite existing values:

thisdict = {

 "brand": "Ford",

 "model": "Mustang",

 "year": 1964,

 "year": 2020

}

print(thisdict)

Dictionary Length

To determine how many items a dictionary has, use the len() function:

Example

Print the number of items in the dictionary:

print(len(thisdict))

Dictionary Items - Data Types

The values in dictionary items can be of any data type:

Example

String, int, boolean, and list data types:

thisdict = {

 "brand": "Ford",

 "electric": False,

 "year": 1964,

 "colors": ["red", "white", "blue"]

}

Try it Yourself »

TOPIC 13: SETS

Set

Sets are used to store multiple items in a single variable.

Set is one of 4 built-in data types in Python used to store collections of data, the

other 3 are List, Tuple, and Dictionary, all with different qualities and usage.

A set is a collection which is unordered, unchangeable*, and unindexed.

thisset = {"apple", "banana", "cherry"}

print(thisset)

Set Items

Set items are unordered, unchangeable, and do not allow duplicate values.

Unordered

Unordered means that the items in a set do not have a defined order.

Set items can appear in a different order every time you use them, and cannot be

referred to by index or key.

Unchangeable

https://www.w3schools.com/python/trypython.asp?filename=demo_dict_datatypes
https://www.w3schools.com/python/python_lists.asp
https://www.w3schools.com/python/python_tuples.asp
https://www.w3schools.com/python/python_dictionaries.asp

Set items are unchangeable, meaning that we cannot change the items after the

set has been created.

Once a set is created, you cannot change its items, but you can remove items and

add new items.

Duplicates Not Allowed

Sets cannot have two items with the same value.

Example

Duplicate values will be ignored:

thisset = {"apple", "banana", "cherry", "apple"}

print(thisset)

Get the number of items in a set:

thisset = {"apple", "banana", "cherry"}

print(len(thisset))

TOPIC 14: SERIALIZING OBJECTS

Serialization in Python

Serialization is converting an information item in memory into a layout that may

be saved or transmitted and later reconstructed into the original object. In Python,

serialization permits you to store complex records systems, consisting of lists,

dictionaries, and custom objects, to a document or transfer them over a

community.

Python gives several integrated serialization modules, including pickle, JSON,

and marshal.

import pickle

Object to serialize

data = [1, 2, 3, 4, 5]

Serialize object to a file

with open('data.pkl', 'wb') as file:

pickle.dump(data, file)

Deserialize object from the file

with open('data.pkl', 'rb') as file:

loaded_data = pickle.load(file)

print(loaded_data)

Output:

[1, 2, 3, 4, 5]

TOPIC 15: CLASSES AND OBJECTS : OOPS

ython Classes/Objects

Python is an object oriented programming language.

Almost everything in Python is an object, with its properties and methods.

A Class is like an object constructor, or a "blueprint" for creating objects.

Create a Class

To create a class, use the keyword class:

Example

class MyClass:

 x = 5

Create Object

Now we can use the class named MyClass to create objects:

Example

Create an object named p1, and print the value of x:

p1 = MyClass()

print(p1.x)

The __init__() Function

The examples above are classes and objects in their simplest form, and are not

really useful in real life applications.

To understand the meaning of classes we have to understand the built-in

__init__() function.

All classes have a function called __init__(), which is always executed when the

class is being initiated.

Use the __init__() function to assign values to object properties, or other

operations that are necessary to do when the object is being created:

Example

Create a class named Person, use the __init__() function to assign values for name

and age:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

p1 = Person("John", 36)

print(p1.name)

print(p1.age)

Object Methods

Objects can also contain methods. Methods in objects are functions that belong

to the object.

Let us create a method in the Person class:

Example

Insert a function that prints a greeting, and execute it on the p1 object:

class Person:

 def __init__(self, name, age):

 self.name = name

 self.age = age

 def myfunc(self):

 print("Hello my name is " + self.name)

p1 = Person("John", 36)

p1.myfunc()

TOPIC 16: GETTING MYSQL FOR PYTHON

Python can be used in database applications.

One of the most popular databases is MySQL.

MySQL Database

To be able to experiment with the code examples in this tutorial, you should have

MySQL installed on your computer.

You can download a MySQL database at https://www.mysql.com/downloads/.

Install MySQL Driver

Python needs a MySQL driver to access the MySQL database.

In this tutorial we will use the driver "MySQL Connector".

We recommend that you use PIP to install "MySQL Connector".

PIP is most likely already installed in your Python environment.

Navigate your command line to the location of PIP, and type the following:

Download and install "MySQL Connector":

C:\Users\Your Name\AppData\Local\Programs\Python\Python36-

32\Scripts>python -m pip install mysql-connector-python

Now you have downloaded and installed a MySQL driver.

Test MySQL Connector

To test if the installation was successful, or if you already have "MySQL

Connector" installed, create a Python page with the following content:

https://www.mysql.com/downloads/

demo_mysql_test.py:

import mysql.connector

If the above code was executed with no errors, "MySQL Connector" is installed

and ready to be used.

Create Connection

Start by creating a connection to the database.

Use the username and password from your MySQL database:

demo_mysql_connection.py:

import mysql.connector

mydb = mysql.connector.connect(

 host="localhost",

 user="yourusername",

 password="yourpassword"

)

print(mydb)

TOPIC 17: IMPORTING MYSQL FOR PYTHON

02 March 2023

 5

 15682 views

 2



o
o

o

o

o

https://www.red-gate.com/simple-talk/databases/mysql/retrieving-mysql-data-python/#comments
https://www.red-gate.com/simple-talk/databases/mysql/retrieving-mysql-data-python/?view=print

Retrieving MySQL data from within Python

This article is part of Robert Sheldon's continuing series on Learning

MySQL. To see all of the items in the series, click here.

Applications of all types commonly access MySQL to retrieve, add, update, or

delete data. The applications might be written in Python, Java, C#, or another

programming language. Most languages support multiple methods for working

with a MySQL database and manipulating its data.

The approach you take when accessing MySQL will depend on the programming

language you’re using and the connector you choose for interfacing with the

database. Whatever approach you take, the same basic principles generally apply

to each environment. You must establish a connection to the database and then

issue the commands necessary to retrieve or modify the data.

Because MySQL can play such an important role in application development, I

wanted to provide you with an overview how to access MySQL data from within

your application code. This article demonstrates how to use the MySQL

Connector from within Python to establish a connection and run a query.

 MySQL 8.0

 Python 3.10

 PyCharm Community Edition IDE

 MySQL Connector/Python 8.0 module

Defining a connection to MySQL

When connecting to a MySQL database in Python, you need to take several basic

steps:

1. Import the connect method from the MySQL Connector module.

2. Use the connect method to create a connection object that includes your

connection details.

3. Use the connection object to run your data-related code.

4. Close the connection.

import the connect method

 from mysql.connector import connect

define a connection object

conn = connect(

 user = 'root',

https://www.red-gate.com/simple-talk/mysql-coding-basics/

 password = 'SqlPW_py@310!ab',

 host = 'localhost',

 database = 'travel')

print('A connection object has been created.')

close the database connection

conn.close()

TOPIC 18: MYSQLDB :CONNECTING WITH A DATABASE

What is MYSQLdb?

MySQLdb is an interface for connecting to a MySQL database server from

Python. It implements the Python Database API v2.0 and is built on top of the

MySQL C API.

Packages to Install

mysql-connector-python

mysql-python

If using anaconda

conda install -c anaconda mysql-python

conda install -c anaconda mysql-connector-python

else

pip install MySQL-python

pip install MySQL-python-connector

Import-Package

import MYSQLdb

 How to connect to a remote MySQL database using python?

Before we start you should know the basics of SQL. Now let us discuss the

methods used in this code:

 connect(): This method is used for creating a connection to our database it

has four arguments:

1. Server Name

2. Database User Name

3. Database Password

4. Database Name

 cursor(): This method creates a cursor object that is capable of executing

SQL queries on the database.

 execute(): This method is used for executing SQL queries on the database.

It takes a sql query(as string) as an argument.

https://www.geeksforgeeks.org/sql-tutorial/

 fetchone(): This method retrieves the next row of a query result set and

returns a single sequence, or None if no more rows are available.

 close() : This method close the database connection.

EXAMPLE

Module For Connecting To MySQL database

import MySQLdb

Function for connecting to MySQL database

def mysqlconnect():

 #Trying to connect

 try:

 db_connection= MySQLdb.connect

 ("Hostname","dbusername","password","dbname")

 # If connection is not successful

 except:

 print("Can't connect to database")

 return 0

 # If Connection Is Successful

 print("Connected")

 # Making Cursor Object For Query Execution

 cursor=db_connection.cursor()

 # Executing Query

 cursor.execute("SELECT CURDATE();")

 # Above Query Gives Us The Current Date

 # Fetching Data

 m = cursor.fetchone()

 # Printing Result Of Above

 print("Today's Date Is ",m[0])

 # Closing Database Connection

 db_connection.close()

Function Call For Connecting To Our Database

mysqlconnect()

OUTPUT

Connected

Today's Date Is 2017-11-14

PYTHON FOR DATA SCIENCE – 23PCS2CC6

STAFF : DN

 I M.Sc CS

UNIT III

TOPIC 1: CONTROLLING THE LINE PROPERTIES OF A CHART

There are many properties of a line that can be set, such as the color, dashes, and

several others. There are essentially three ways of doing this. Let's take a simple

line chart as an example:

Creating a Basic Line Plot in Matplotlib

We will start by creating a basic line plot and then customize the line plot to make

it look more presentable and informative.

Using plt.plot() to create a line plot

To create a line plot, we will use the plt.plot() function. This function takes two

parameters; the x-axis values and y-axis values. In our case, the date column will

be our x-axis values, while the close column will be our y-axis values. Here is the

code:

Extract the date and close price columns

dates = df['Date']

closing_price = df['Close']

Create a line plot

plt.plot(dates, closing_price)

Show the plot

plt.show()

When you run the above code, you should see a basic line plot of the DJIA

stock.

Customizing the Line Plot

Matplotlib presents us with plenty of further customizations, which we can utilize

per our needs.

Setting the line color

By default, the plt.plot() function plots a blue line. However, you can change the

line color by passing a color parameter to the function. The color parameter can

take a string representing the color name or a hexadecimal code.

Here is an example:

Plot in Red colour

plt.plot(dates, closing_price, color='red')

Show the plot

plt.show()

This code will plot a red line instead of a blue one as shown below:

Setting the line width

You can also change the line width by passing a linewidth parameter to

the plt.plot() function. The linewidth parameter takes a floating-point value

representing the line's width.

Here is an example:

Increasing the linewidth

plt.plot(dates, closing_price, linewidth=3)

Show the plot

plt.show()

This code will plot a line with a width of 3 instead of the default width as shown

below:

Setting the line style

You can change the line style by passing a linestyle parameter to

the plt.plot() function. The linestyle parameter takes a string that represents the

line style. The matplotlib documentation provides an extensive list of styles

available.

Here’s how these can be used in code:

Individually plot lines in solid, dotted, dashed and dashdot

https://matplotlib.org/stable/gallery/lines_bars_and_markers/linestyles.html

plt.plot(dates, closing_price, linestyle='solid') # Default line style

plt.plot(dates, closing_price, linestyle='dotted')

plt.plot(dates, closing_price, linestyle='dashed')

plt.plot(dates, closing_price, linestyle='dashdot')

Show the plot

plt.show()

Adding labels and title

To make the plot more informative, we can add axis labels and a title. We can

achieve this by using the plt.xlabel(), plt.ylabel(), and plt.title() functions,

respectively.

Here is an example:

plt.plot(dates, closing_price, color='red', linewidth=2)

plt.xlabel('Date')

plt.ylabel('Closing Price')

plt.title('DJIA Stock Price')

Show the plot

plt.show()

This code will plot a red line with a width of 2, with the x-axis labeled ‘Date,’ the

y-axis labeled ‘Closing Price,’ and the title ‘DJIA Stock Price.’

Adding grid lines

We can also add grid lines to our plot to make it more readable. We can achieve

this by using the plt.grid() function. The plt.grid() function takes a boolean value

representing whether the grid should be shown.

Here is an example:

plt.plot(dates, closing_price, color='red', linewidth=2)

plt.xlabel('Date')

plt.ylabel('Closing Price')

plt.title('DJIA Stock Price')

Add the grid

plt.grid(True)

Show the plot

plt.show()

 OpenAI

You’d see added grids to the plot:

TOPIC 2: CREATING MULTIPLE PLOTS

It might need to plot multiple lines on the same graph. To do this, you can call

the plt.plot() function multiple times with different data for each call. Here is an

example:

Line plot of Open and Close prices

plt.plot(df['Date'], df['Open'])

plt.plot(df['Date'], df['Close'])

plt.title('DJIA Open and Close Prices')

plt.xlabel('Date')

plt.ylabel('Price')

plt.show()

In the above code, we are plotting both the Open and Close prices of the DJIA

stock on the same graph.

TOPIC 3: PLAYING WITH TEXT

Adding text to your chart can be done by using a simple matplotlib function. You

only have to use the text() command to add it to the chart:

>>> # Playing with text

>>> n = np.random.random_sample((5,))

>>> plt.bar(np.arange(len(n)), n)

>>> plt.xlabel('Indices')

>>> plt.ylabel('Value')

>>> plt.text(1, .7, r'$\mu=' + str(np.round(np.mean(n), 2)) + ' $')

>>> plt.show()

In the preceding code, the text() command is used to add text within the plot:

The first parameter takes the x axis value and the second parameter takes

the y axis value. The third parameter is the text that needs to be added to the plot.

The latex expression has been used to plot the mu mean within the plot.

A certain section of the chart can be annotated by using the annotate command.

The annotate command will take the text, the position of the section of plot that

needs to be pointed at, and the position of the text.

TOPIC 4: STYLING YOUR PLOTS

The style package within the matplotlib library makes it easier to change the style

of the plots that are being plotted. It is very easy to change to the

famous ggplot style of the R language or use the Nate Silver's

website http://fivethirtyeight.com/ for fivethirtyeight style. The following

example shows the plotting of a simple line chart with the ggplot style:

>>> plt.style.use('ggplot')

>>> plt.plot([1, 2, 3, 4], [1, 4, 9, 16])

>>> plt.show()

After the preceding code is executed we'll get the following output:

In the preceding code, plt.style.use() is used to set the style of the plot. It is a

global set, so after it is executed, all the plots that follow will have the same style.

 Matplotlib is the most popular package or library in Python which is used for

data visualization. By using this library we can generate plots and figures, and

can easily create raster and vector files without using any other GUIs. With

matplotlib, we can style the plots like, an HTML webpage is styled by using

CSS styles. We just need to import style package of matplotlib library.

There are various built-in styles in style package, and we can also write

customized style files and, then, to use those styles all you need to import them

and apply on the graphs and plots. In this way, we need not write various lines

https://fivethirtyeight.com/

of code for each plot individually again and again i.e. the code is reusable

whenever required.

First, we will import the module:

from matplotlib import style

To list all the available styles:

from matplotlib import style

print(plt.style.available)

Output:

[‘Solarize_Light2’, ‘_classic_test_patch’, ‘bmh’, ‘classic’,

‘dark_background’, ‘fast’, ‘fivethirtyeight’,

‘ggplot’,’grayscale’,’seaborn’,’seaborn-bright’,’seaborn-colorblind’,

‘seaborn-dark’, ‘seaborn-dark-palette’, ‘seaborn-darkgrid’, ‘seaborn-deep’,

‘seaborn-muted’, ‘seaborn-notebook’, ‘seaborn-paper’, ‘seaborn-pastel’,

‘seaborn-poster’,’seaborn-talk’,’seaborn-ticks’,’seaborn-white’,’seaborn-

whitegrid’,’tableau-colorblind10′]

import numpy as np

import matplotlib.pyplot as plt

 # importing the style package

from matplotlib import style

 # creating an array of data for plot

data = np.random.randn(50)

 # using the style for the plot

plt.style.use('Solarize_Light2')

creating a plot

plt.plot(data)

show plot

plt.show()

Output:

import numpy as np

import matplotlib.pyplot as plt

importing the style package

from matplotlib import style

with plt.style.context('dark_background'):

 plt.plot(np.sin(np.linspace(0, 2 * np.pi)), 'r-o')

plt.show()

Output:

TOPIC 5: BOX PLOTS

A Box Plot is also known as Whisker plot is created to display the summary of

the set of data values having properties like minimum, first quartile, median, third

quartile and maximum. In the box plot, a box is created from the first quartile to

the third quartile, a vertical line is also there which goes through the box at the

median. Here x-axis denotes the data to be plotted while the y-axis shows the

frequency distribution.

Creating Box Plot

The matplotlib.pyplot module of matplotlib library provides boxplot() function

with the help of which we can create box plots.

Syntax:

matplotlib.pyplot.boxplot(data, notch=None, vert=None, patch_artist=None,

widths=None)

Parameters:

Attribute Value

data array or sequence of array to be plotted

notch optional parameter accepts boolean values

vert
optional parameter accepts boolean values false and true for

horizontal and vertical plot respectively

https://www.geeksforgeeks.org/pyplot-in-matplotlib/

Attribute Value

bootstrap
optional parameter accepts int specifies intervals around

notched boxplots

usermedians
optional parameter accepts array or sequence of array dimension

compatible with data

positions optional parameter accepts array and sets the position of boxes

widths optional parameter accepts array and sets the width of boxes

patch_artist optional parameter having boolean values

labels sequence of strings sets label for each dataset

meanline
optional having boolean value try to render meanline as full

width of box

order optional parameter sets the order of the boxplot

The data values given to the ax.boxplot() method can be a Numpy array or

Python list or Tuple of arrays. Let us create the box plot by using

numpy.random.normal() to create some random data, it takes mean, standard

deviation, and the desired number of values as arguments.

Example:

Import libraries

import matplotlib.pyplot as plt

import numpy as np

Creating dataset

np.random.seed(10)

data = np.random.normal(100, 20, 200)

fig = plt.figure(figsize =(10, 7))

Creating plot

plt.boxplot(data)

show plot

plt.show()

Output:

Customizing Box Plot

Example 2

Import libraries

import matplotlib.pyplot as plt

import numpy as np

Creating dataset

np.random.seed(10)

data_1 = np.random.normal(100, 10, 200)

data_2 = np.random.normal(90, 20, 200)

data_3 = np.random.normal(80, 30, 200)

data_4 = np.random.normal(70, 40, 200)

data = [data_1, data_2, data_3, data_4]

fig = plt.figure(figsize =(10, 7))

Creating axes instance

ax = fig.add_axes([0, 0, 1, 1])

Creating plot

bp = ax.boxplot(data)

show plot

plt.show()

Output:

TOPIC 6: HEATMAPS

Heatmap is defined as a graphical representation of data using colors to visualize

the value of the matrix. In this, to represent more common values or higher

activities brighter colors basically reddish colors are used and to represent less

common or activity values, darker colors are preferred. Heatmap is also defined

by the name of the shading matrix. Heatmaps in Seaborn can be plotted by using

the seaborn.heatmap() function.

seaborn.heatmap()

Syntax: seaborn.heatmap(data, *, vmin=None, vmax=None, cmap=None, cente

r=None, annot_kws=None, linewidths=0, linecolor=’white’, cbar=True, **kwa

rgs)

Important Parameters:

 data: 2D dataset that can be coerced into an ndarray.

 vmin, vmax: Values to anchor the colormap, otherwise they are inferred from

the data and other keyword arguments.

 cmap: The mapping from data values to color space.

 center: The value at which to center the colormap when plotting divergent

data.

 annot: If True, write the data value in each cell.

 fmt: String formatting code to use when adding annotations.

 linewidths: Width of the lines that will divide each cell.

 linecolor: Color of the lines that will divide each cell.

 cbar: Whether to draw a colorbar.

All the parameters except data are optional.

Basic Heatmap

Making a heatmap with the default parameters. We will be creating a 10×10 2-

D data using the randint() function of the NumPy module.

importing the modules

import numpy as np

import seaborn as sn

import matplotlib.pyplot as plt

generating 2-D 10x10 matrix of random numbers

from 1 to 100

data = np.random.randint(low = 1,

 high = 100,

 size = (10, 10))

print("The data to be plotted:\n")

print(data)

plotting the heatmap

hm = sn.heatmap(data = data)

https://www.geeksforgeeks.org/random-sampling-in-numpy-randint-function/

displaying the plotted heatmap

plt.show()

Output:

The data to be plotted:

[[46 30 55 86 42 94 31 56 21 7]

[68 42 95 28 93 13 90 27 14 65]

[73 84 92 66 16 15 57 36 46 84]

[7 11 41 37 8 41 96 53 51 72]

[52 64 1 80 33 30 91 80 28 88]

[19 93 64 23 72 15 39 35 62 3]

[51 45 51 17 83 37 81 31 62 10]

[9 28 30 47 73 96 10 43 30 2]

[74 28 34 26 2 70 82 53 97 96]

[86 13 60 51 95 26 22 29 14 29]]

TOPIC 7: SCATTER PLOTS WITH HISTOGRAMS

Scatter Plot with Marginal Histograms is basically a joint distribution plot with

the marginal distributions of the two variables. In data visualization, we often

plot the joint behavior of two random variables (bi-variate distribution) or any

number of random variables. But if data is too large, overlapping can be an issue.

Hence, to distinguish between variables it is useful to have the probability

distribution of each variable on the side along with the joint plot. This individual

probability distribution of a random variable is referred to as its marginal

probability distribution.

In seaborn, this is facilitated with jointplot(). It represents the bi-variate

distribution using scatterplot() and the marginal distributions using histplot().

importing and creating alias for seaborn

import seaborn as sns

loading tips dataset

tips = sns.load_dataset("tips")

plotting scatterplot with histograms for features total bill and tip.

sns.jointplot(data=tips, x="total_bill", y="tip")

Output :

<seaborn.axisgrid.JointGrid at 0x26203152688>

TOPIC 8: A SCATTER PLOT MATRIX

In a dataset, for k set of variables/columns (X1, X2, ….Xk), the scatter plot

matrix plot all the pairwise scatter between different variables in the form of a

matrix.

Scatter plot matrix answer the following questions:

 Are there any pair-wise relationships between different variables? And if

there are relationships, what is the nature of these relationships?

 Are there any outliers in the dataset?

 Is there any clustering by groups present in the dataset on the basis of a

particular variable?

For k variables in the dataset, the scatter plot matrix contains k rows and k

columns. Each row and column represents as a single scatter plot. Each

individual plot (i, j) can be defined as:

 Vertical Axis: Variable Xj

 Horizontal Axis: Variable Xi

Below are some important factors we consider when plotting the Scatter plot

matrix:

 The plot lies on the diagonal is just a 45 line because we are plotting here

Xi vs Xi. However, we can plot the histogram for the Xi in the diagonals or

just leave it blank.

 Since Xi vs Xj is equivalent to Xj vs Xi with the axes reversed, we can also

omit the plots below the diagonal.

 It can be more helpful if we overlay some line plot on the scattered points in

the plots to give more understanding of the plot.

 The idea of the pair-wise plot can also be extended to different other plots

such as quantile-quantile plots or bihistogram.

Example:

import plotly.express as px

df = px.data.iris()

fig = px.scatter_matrix(df)

fig.show()

TOPIC 9: AREA PLOTS

An area chart is really similar to a line chart, except that the area between the x

axis and the line is filled in with color or shading. It represents the evolution of a

numeric variable. This section starts by considering matplotlib and seaborn as

tools to build area charts. It then shows a few other options for timeseries.

import plotly.express as px

df = px.data.iris()

fig = px.area(df, x="sepal_width", y="sepal_length",

 color="species",

 hover_data=['petal_width'],)

fig.show()

 Output:

https://www.data-to-viz.com/graph/area.html
http://python-graph-gallery.com/line-chart/

TOPIC 10: BUBBLE CHARTS

The bubble chart in Plotly is created using the scatter plot. It can be created

using the scatter() method of plotly.express. A bubble chart is a data

visualization which helps to displays multiple circles (bubbles) in a two-

dimensional plot as same in scatter plot. A bubble chart is primarily used to

depict and show relationships between numeric variables.
Example:

import plotly.express as px

df = px.data.iris()

fig = px.scatter(df, x="sepal_width", y="sepal_length",

 color="species",

 size='petal_length',

 hover_data=['petal_width'])

fig.show()

Output:

Set Marker Size
Marker size and color are used to control the overall size of the marker. Marker

size helps to maintain the color inside the bubble in the graph. Scatter is used to

actually scale the marker sizes and color based on data.

Example:

import plotly.graph_objects as px

import numpy as np

creating random data through randomint

function of numpy.random

np.random.seed(42)

random_x= np.random.randint(1,101,100)

random_y= np.random.randint(1,101,100)

plot = px.Figure(data=[px.Scatter(

 x = random_x,

 y = random_y,

 mode = 'markers',

 marker_size = [115, 20, 30])

])

plot.show()

Output:

TOPIC 11: HEXAGON BIN PLOTS

Hexagon bin plot is a 2D histogram plot, in which the bins are hexagons and the

color represents the number of data points within each bin.A hexagon bin plot can

be created using the DataFrame.plot() function and kind = 'hexbin'. This kind of

plot is really useful if your scatter plot is too dense to interpret. It helps in binning

the spatial area of the chart and the intensity of the color that a hexagon can be

interpreted as points being more concentrated in this area.

The following code helps in plotting the hexagon bin plot, and the structure of the

code is similar to the previously discussed plots:

>>> df = pd.DataFrame(np.random.randn(1000, 2), columns=['a', 'b'])

>>> df['b'] = df['b'] + np.arange(1000)

>>> df.plot(kind='hexbin', x='a', y='b', gridsize=25)

After the preceding code is executed we'll get the following output:

TOPIC 12: TRELLIS PLOTS

A Trellis plot is a layout of smaller charts in a grid with consistent scales. Each

smaller chart represents an item in a category, named conditions. The data

displayed on each smaller chart is conditional for the items in the category.

Trellis plots are useful for finding structures and patterns in complex data. The

grid layout looks similar to a garden trellis, hence the name Trellis plots.

The following code helps in plotting a trellis chart where for each combination of

sex and smoker/nonsmoker:

>>> tips_data = pd.read_csv('Data/tips.csv')

>>> plt.figure()

>>> plot = rplot.RPlot(tips_data, x='total_bill', y='tip')

>>> plot.add(rplot.TrellisGrid(['sex', 'smoker']))

>>> plot.add(rplot.GeomHistogram())

>>> plot.render(plt.gcf())

After the preceding code is executed we'll get the following output:

TOPIC 13: *A 3D PLOT OF A SURFACE

A Surface Plot is a representation of three-dimensional dataset. It describes a

functional relationship between two independent variables X and Z and a

designated dependent variable Y, rather than showing the individual data points.

It is a companion plot of the contour plot. It is similar to the wireframe plot, but

each face of the wireframe is a filled polygon. This helps to create the topology

of the surface which is being visualized.

Creating 3D surface Plot

The axes3d present in Matplotlib’s mpl_toolkits.mplot3d toolkit provides the

necessary functions used to create 3D surface plots.Surface plots are created by

using ax.plot_surface() function.

Syntax:

ax.plot_surface(X, Y, Z)

where X and Y are 2D array of points of x and y while Z is 2D array of

heights.Some more attributes of ax.plot_surface() function are listed below:

Attribute Description

X, Y, Z 2D arrays of data values

cstride array of column stride(step size)

rstride array of row stride(step size)

ccount number of columns to be used, default is 50

rcount number of row to be used, default is 50

color color of the surface

cmap colormap for the surface

norm instance to normalize values of color map

vmin minimum value of map

vmax maximum value of map

facecolors face color of individual surface

shade shades the face color

Example: Let’s create a 3D surface by using the above function

Import libraries

from mpl_toolkits import mplot3d

import numpy as np

import matplotlib.pyplot as plt

Creating dataset

x = np.outer(np.linspace(-3, 3, 32), np.ones(32))

y = x.copy().T # transpose

z = (np.sin(x **2) + np.cos(y **2))

Creating figure

fig = plt.figure(figsize =(14, 9))

ax = plt.axes(projection ='3d')

Creating plot

ax.plot_surface(x, y, z)

show plot

plt.show()

Output:

	Python List Slicing Syntax
	Indexing in Python List
	Positive Indexes
	Negative Indexes
	Slicing

	Examples of List Slicing in Python
	ExampleGet your own Python Server

	Characteristics of Lists
	Updating List Values
	Python List Operations
	1. Repetition
	2. Concatenation
	3. Length
	4. Iteration
	5. Membership

	Iterating a List
	Features of Python Tuple
	Forming a Tuple:

	Accessing Tuple Elements
	Slicing
	Deleting a Tuple
	String Operators: Adding and Multiplyingstring-operators-adding-and-multiplying
	Concatenate concatenate
	Multiply multiply
	Append append

	String Methods: Finding, Changingstring-methods-finding-changing
	Length length
	Find find
	Lower Caselower-case
	Replace replace
	Slice slice

	What’s a String in Python?
	A python string is a list of characters in an order. A character is anything you can type on the keyboard in one keystroke, like a letter, a number, or a backslash. Strings can also have spaces, tabs, and newline characters.
	ex
	myStr="hello world"
	We can also define an empty string that has 0 characters as shown below.
	myStr=""
	In python, every string starts with and ends with quotation marks i.e. single quotes ‘ ‘, double quotes ” ” or triple quotes “”” “””.
	String Manipulation
	Creating a string
	Create a String in Python
	Access Characters in a String in Python
	Find Length of a String in Python
	Find a Character in a String in Python
	Count the Number of Spaces in a String in Python

	String Slicing in Python
	Dictionary Items
	Example

	Ordered or Unordered?
	Changeable
	Duplicates Not Allowed
	Example

	Dictionary Length
	Example

	Dictionary Items - Data Types
	Example

	Set
	Set Items
	Unordered
	Unchangeable
	Duplicates Not Allowed (1)
	Example

	Serialization in Python
	ython Classes/Objects
	Create a Class
	Example

	Create Object
	Example

	The __init__() Function
	Example

	Object Methods
	Example

	MySQL Database
	Install MySQL Driver
	Test MySQL Connector
	Create Connection

	Retrieving MySQL data from within Python
	Defining a connection to MySQL

	Creating a Basic Line Plot in Matplotlib
	Using plt.plot() to create a line plot

	Customizing the Line Plot
	Setting the line color
	Setting the line width
	Setting the line style
	Adding labels and title
	Adding grid lines
	Creating Box Plot
	Customizing Box Plot
	seaborn.heatmap()
	Basic Heatmap

	Set Marker Size
	Creating 3D surface Plot

