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1 Introduction

We are familiar with the three dimensional right handed rectangular coordinate system,

with x, y and z as the coordinate axes. This coordinate system is very much intuitive and

has been used to solve many problems in Newtonian and Relativistic Mechanics. However

to solve problems involving spherical symmetry such as the motion of the electrons in an

atom or problems involving cylindrical geometry such as in the motion of the charged

particles in electromagnetic fields etc., this coordinate system is found to be inappropriate.

Hence we go in for a generalized curvilinear system wherein the problems become easily

solvable using the method of separation of variables. The ability to transform variables

and expressions from cartesian coordinate system to other equivalent coordinate systems

is therefor absolutely essential for solving a number of problems in Physics.

2 Generalized Curvilinear Coordinates

Let us consider a three dimensional space, defined by three single valued functions, say u1,

u2 and u3 along the three directions respectively.
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A Point

Let P be a point in this space. This point can be represented mathematically by the

function P ≡ P (u1, u2, u3).

Coordinate Surfaces

A coordinate surface is a two dimensional plane along which any two functions defin-

ing the position may change, while the third remains a constant. Thus u1 = c1,

u2 = c2 and u3 = c3 define coordinate surfaces along the three directions. For the

surface u1 = c1, the function u1 is a constant equal to c1, while the functions u2

and u3 may vary. Similarly for the surface u2 = c2, the function u2 is a constant

equal to c2, while the functions u1 and u3 may vary, while for the surface u3 = c3,

the function u3 is a constant equal to c3, while the functions u1 and u2 may vary.

Note: In cartesian coordinate system, we have three mutually perpendicular planes

x = constant, y = constant and z = constant.

Coordinate Lines

When two coordinate surfaces intersect each other, they form a line pointing along

the third direction. This line of intersection is called as the coordinate line. For a

three dimensional space, we have three coordinate lines, namely u1, u2 and u3 formed

by the intersections of the surfaces (u2&u3),(u1&u3) and (u1&u2) respectively.

Note: In cartesian coordinate system, we have three coordinate lines x, y & z formed

by the intersection of the surfaces (y, z), (x, z) and (x, y) respectively.

Coordinate Axes

Tangents drawn to the coordinate lines at the coordinate point P are called as coor-

dinate axes. Thus for the point P we have a1, a2 and a3 as coordinate axes, which

are tangents to the coordinate lines u1, u2 and u3 respectively as shown in Fig. 1.
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Figure 1: Schematic Representation of Generalized Coordinates

General Curvilinear Coordinates

If the relative orientation of the coordinate surfaces change from point to point, then

the coordinates u1, u2 and u3 are called as general curvilinear coordinates.

Orthogonal Curvilinear Coordinates

If the three coordinate surfaces are mutually perpendicular at all points then the

coordinates u1, u2 and u3 are called as orthogonal curvilinear coordinates.

3 Transformation of Curvilinear Coordinates

Curvilinear coordinates obey the following transformation and inverse transformation re-

lations, namely

xi = Pi(u1, u2, u3), i = 1, 2, 3. (1)

and

ui = Qi(x1, x2, x3), i = 1, 2, 3. (2)
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where Pi = Q−1i and vice-versa.

Distance or Displacement

The position vector of a point may be defined as ~r ≡ ~r(u1, u2, u3). Then an element

of displacement of this point may be given as

d~r =
∂r

∂u1
du1 +

∂r

∂u2
du2 +

∂r

∂u3
du3,

=

{
∂r1
∂u1

+
∂r2
∂u1

+
∂r3
∂u1

}
du1 +

{
∂r1
∂u2

+
∂r2
∂u2

+
∂r3
∂u2

}
du2 +

{
∂r1
∂u3

+
∂r2
∂u3

+
∂r3
∂u3

}
du3,

=
3∑

k=1

(
∂rk
∂u1

)
du1 +

3∑
k=1

(
∂rk
∂u2

)
du2 +

3∑
k=1

(
∂rk
∂u3

)
du3,

=
3∑
i=1

3∑
k=1

(
∂rk
∂ui

)
dui ≡ dS. (3)

Here rk is the kth direction and
3∑

k=1

(
∂rk
∂ui

)
is the incremental change in r along the

direction of ui. But
3∑

k=1

(
∂rk
∂ui

)
= ai, where ai is the coordinate axis along the ith

direction. Hence Eq. (3) gives

dS =
3∑
i=1

aidui. (4)

Square of Displacement

The square of displacement may be given as

dS2 =
3∑
i=1

3∑
j=1

aiajduiduj. (5)

Note: For general curvilinear coordinates, ai and aj may vary in direction and mag-

nitude from point to point.
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Metric Coefficient (gij)

The product of coordinate axes is called as the metric coefficient gij. It is given as

gij = ai.aj

=
3∑
i=1

3∑
j=1

3∑
k=1

(
∂rk
∂ui

)(
∂rk
∂uj

)
(6)

In terms of metric coefficients, the square of the displacement becomes

dS2 =
3∑
i=1

3∑
j=1

gijduiduj. (7)

4 Orthogonal Curvilinear Coordinates

For orthogonal curvilinear coordinates,

gij = ai.aj.δij. (8)

This means that if i 6= j, gij = 0. Hence for the orthogonal coordinates, the metric

coefficients can be given as

gij =
3∑
i=1

(
∂rk
∂ui

)2

. (9)

Then the square of the displacement is given as

dS2 =
3∑
i=1

gijdu
2
i

= g11du
2
1 + g22du

2
2 + g33du

2
3. (10)
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If dS1, dS2 and dS3 be the length segments of the displacement along the directions of u1,

u2 and u3 then the square of the displacement can be given as

dS2 = dS2
1 + dS2

2 + dS2
3 . (11)

Further the length segments of the displacements along their respective directions are given

as

dS1 = h1du1

dS2 = h2du2

dS3 = h3du3. (12)

where h1, h2 and h3 are called as scale factors.

In terms of the components along the three direction, the square of displacements can be

given as

dS2 = h21du
2
1 + h22du

2
2 + h23du

2
3. (13)

Comparing Eq. (10) with the above equation Eq. (13) gives

h1 =
√
g11

h2 =
√
g22

h3 =
√
g33. (14)

Equations (14) relate the metric coefficients and scale factors.

Note: Equations (12) define the length elements in curvilinear coordinates. In a similar
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manner we have the area and volume elements given as

dσ = hihjduiduj. (15)

and

dτ = hihjhkduidujduk. (16)

5 Gradient, Divergence, Curl and Laplacian

Let us derive the general expressions for the gradient, divergence, curl and Laplacian

operators in the orthogonal curvilinear coordinate system.

5.1 Gradient

Let us assume that Φ(u1, u2, u3) be a single valued scalar function with continuous first

order partial derivatives. Then the gradient of Φ is a vector whose component in any

direction dSi, is the derivative of Φ with respect to Si.

∇Φ = ê1
∂Φ

∂S1

+ ê2
∂Φ

∂S2

+ ê3
∂Φ

∂S3

,

where ê1, ê2 and ê3 are the unit vectors along ∂S1, ∂S2 and ∂S3 respectively and

∂Φ

∂Si
=

Lt
∆Si→0

{
Φ(Si +∆Si)− Φ(Si)

∆Si

}

But from Eq. (12), ∂Si = hi∂ui. Therefore we have

∇Φ =
ê1
h1

∂Φ

∂u1
+
ê2
h2

∂Φ

∂u2
+
ê3
h3

∂Φ

∂u3
,

=

{
ê1
h1

∂

∂u1
+
ê2
h2

∂

∂u2
+
ê3
h3

∂

∂u3

}
Φ. (17)
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From the above equation Eq. (17) we find that the gradient operator itself in orthogonal

coordinates is given as

∇ =

{
ê1
h1

∂

∂u1
+
ê2
h2

∂

∂u2
+
ê3
h3

∂

∂u3

}
. (18)

5.2 Divergence

Let ~A be a vector in orthogonal curvilinear space. In terms of its components it can be

written as

~A = ê1A1 + ê2A2 + ê3A3

=
3∑
i=1

êiAi. (19)
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Then the divergence of this vector ~A can be given from Eq. (18) as

∇. ~A =

{
ê1
h1

∂

∂u1
+
ê2
h2

∂

∂u2
+
ê3
h3

∂

∂u3

}
. {ê1A1 + ê2A2 + ê3A3}

=
3∑
i=1

{
êi
hi

∂

∂ui

}
.

3∑
j=1

{êjAj}

=
3∑
i=1

1

hi

(
∂Ai
∂ui

)
, since êi.êj = δij

=
3∑
i=1

1

hi

∂

∂ui

{
1

hjhk

}
(hjhkAi)

=
3∑
i=1

1

hi

∂

∂ui
[ΦΨ] , where Φ =

{
1

hjhk

}
and Ψ = (hjhkAi)

=
3∑
i=1

1

hi

{
Φ
∂Ψ

∂ui
+ Ψ

∂Φ

∂ui

}

=
3∑
i=1

1

hi

{
Φ
∂Ψ

∂ui

}
, since

∂Φ

∂ui
= 0, as Φ is a scalar

=
3∑

i,j,k=1

1

hi

{
1

hjhk

∂ (hjhkAi)

∂ui

}
,

=
1

h1h2h3

∂ (h2h3A1)

∂u1
+

1

h2h3h1

∂ (h3h1A2)

∂u2
+

1

h3h1h2

∂ (h1h2A3)

∂u3
or

∇. ~A =
1

h1h2h3

[
∂ (h2h3A1)

∂u1
+
∂ (h3h1A2)

∂u2
+
∂ (h1h2A3)

∂u3

]
. (20)

The above equation (20) gives the expression for the divergence of a vector ~A in a general

orthogonal curvilinear coordinate syetem.

9



5.3 Laplacian

We know that the gradient of a scalar function always gives a vector quantity. If Φ is the

scalar function, then the gradient of Φ is a vector ~A given by

~A = ∇Φ. (21)

Then comparing Eq. (19) and Eq. (17) we have the components of the vector ~A given by

A1 =
1

h1

∂Φ

∂u1

A2 =
1

h2

∂Φ

∂u2

A3 =
1

h3

∂Φ

∂u3
. (22)

We know

∇2Φ = ∇.∇Φ or from Eq.(21)

∇2Φ = ∇. ~A or from Eq.(20)

∇2Φ =
1

h1h2h3

[
∂ (h2h3A1)

∂u1
+
∂ (h3h1A2)

∂u2
+
∂ (h1h2A3)

∂u3

]
. (23)

Substituting Eq. (22) in Eq. (23), we have

∇2Φ =
1

h1h2h3

[
∂

∂u1

(
h2h3
h1

∂Φ

∂u1

)
+

∂

∂u2

(
h1h3
h2

∂Φ

∂u2

)
+

∂

∂u3

(
h1h2
h3

∂Φ

∂u3

)]
(24)

The Eq. (24) gives the general expression for the Laplacian in orthogonal curvilinear

coordinate system.
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5.4 Curl

Let ~A be a vector in orthogonal coordinate system represented as

~A = ê1A1 + ê2A2 + ê3A3. (25)

Multiplying and dividing the components Ai by hi, the above equation (25) becomes

~A =
ê1
h1

(h1A1) +
ê2
h2

(h2A2) +
ê3
h3

(h3A3) (26)

Then the curl of ~A can be given as

∇× ~A = ∇×
[
ê1
h1

(h1A1) +
ê2
h2

(h2A2) +
ê3
h3

(h3A3)

]
. (27)

We know that if Φ is a scalar and Ψ is a scalar, then

∇× (ΦΨ) = Φ∇×Ψ−Ψ×∇Φ. (28)

If Φ = (h1A1) and Ψ =

{
ê1
h1

}
, then the fist component of the curl of ~A in Eq. (27)

becomes

∇×
[
ê1
h1

(h1A1)

]
= (h1A1)∇×

{
ê1
h1

}
−
{
ê1
h1

}
×∇(h1A1). (29)

But from vector relations we can prove that

(h1A1)∇×
{
ê1
h1

}
= 0, (30)

Hence Eq. (29) becomes

∇×
[
ê1
h1

(h1A1)

]
= −

{
ê1
h1

}
×∇(h1A1). (31)
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But from Eq. (18),

∇ =

{
ê1
h1

∂

∂u1
+
ê2
h2

∂

∂u2
+
ê3
h3

∂

∂u3

}
. (32)

Hence using this Eq. (31) becomes

∇×
[
ê1
h1

(h1A1)

]
= −

{
ê1
h1

}
×
[
ê1
h1

∂(h1A1)

∂u1
+
ê2
h2

∂(h1A1)

∂u2
+
ê3
h3

∂(h1A1)

∂u3

]
(33)

But we know that

ê1 × ê1 = 0

ê1 × ê2 = ê3

ê1 × ê3 = −ê2. (34)

Hence Eq. (33) becomes

∇×
[
ê1
h1

(h1A1)

]
= − 1

h1h2h3

[
h3ê3

∂(h1A1)

∂u2
− h2ê2

∂(h1A1)

∂u3

]
. (35)

Similarly evaluating the second and third terms in the right hand side of Eq. (27), and

collecting the expressions together as a determinant, we have

∇× ~A =
1

h1h2h3

∣∣∣∣∣∣∣∣∣∣
h1ê1 h2ê2 h3ê3

∂/∂u1 ∂/∂u2 ∂/∂u3

h1A1 h2A2 h3A3

∣∣∣∣∣∣∣∣∣∣
(36)

The Eq. (36) gives the expression for curl in orthogonal curvilinear coordinates.
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6 Cartesian Coordinates

In the right handed Cartesian coordinate system, the unit vectors are

ê1 = î

ê2 = ĵ

ê3 = k̂. (37)

Further the components are

u1 = x

u2 = y

u3 = z. (38)

Hence the position vector in this system can be represented as

~r = îx+ ĵy + k̂z. (39)

6.1 Metric Coefficients and Scale Factors

The metric coefficients for the orthogonal curvilinear coordinate system is given by Eq. (9)

gij =
3∑
i=1

(
∂rk
∂ui

)2

. (40)

13



Hence substituting Eq. (39) in this, the metric coefficients g11, g22 and g33 for the Cartesian

coordinate system can be evaluated as

g11 =

(
∂x

∂x

)2

+

(
∂y

∂x

)2

+

(
∂z

∂x

)2

= 1

g22 =

(
∂x

∂y

)2

+

(
∂y

∂y

)2

+

(
∂z

∂y

)2

= 1

g33 =

(
∂x

∂z

)2

+

(
∂y

∂z

)2

+

(
∂z

∂z

)2

= 1. (41)

We know the scale factors are given in terms of metric coefficients as

h1 =
√
g11

h2 =
√
g22

h3 =
√
g33. (42)

Substituting Eqs. (41), in the above equations, the scale factors for the cartesian coordinate

system are

h1 = 1

h2 = 1

h3 = 1. (43)

6.2 Gradient

Let Φ(x, y, z) be a single valued scalar function in cartesian coordinate system. Then using

Eqs. (37), (38) and (43), the general expression for the gradient

∇Φ =

{
ê1
h1

∂

∂u1
+
ê2
h2

∂

∂u2
+
ê3
h3

∂

∂u3

}
Φ. (44)
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becomes

∇Φ = î
∂Φ

∂x
+ ĵ

∂Φ

∂y
+ k̂

∂Φ

∂z
. (45)

6.3 Divergence

A vector ~A in general orthogonal curvilinear coordinates is given as

~A = ê1A1 + ê2A2 + ê3A3. (46)

Using Eq. (37) and assuming A1 = Ax, A2 = Ay and A3 = Az the above equation becomes

~A = îAx + ĵAy + k̂Az. (47)

The expression for the divergence in a general curvilinear system is given by Eq. (20)

∇. ~A =
1

h1h2h3

[
∂ (h2h3A1)

∂u1
+
∂ (h3h1A2)

∂u2
+
∂ (h1h2A3)

∂u3

]
. (48)

Using Eqs. (38) and (43) and assuming A1 = Ax, A2 = Ay and A3 = Az, the divergence of

vector in cartesian coordinate system is given as

∇. ~A =
∂Ax
∂x

+
∂Ay
∂y

+
∂Az
∂z

. (49)

6.4 Laplacian

The general expression for the Laplacian of a scalar function Φ in general orthogonal

curvilinear coordinate system is given from Eq. (24) as

∇2Φ =
1

h1h2h3

[
∂

∂u1

(
h2h3
h1

∂Φ

∂u1

)
+

∂

∂u2

(
h1h3
h2

∂Φ

∂u2

)
+

∂

∂u3

(
h1h2
h3

∂Φ

∂u3

)]
(50)
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Using Eqs. (38) and (43), the Laplacian of the scalar function in cartesian coordinate

system is given as

∇2Φ =
∂2Φ

∂x2
+
∂2Φ

∂y2
+
∂2Φ

∂z2
. (51)

6.5 Curl

The general equation for the curl of a vector ~A in curvilinear coordiantes is given from Eq.

(36) as

∇× ~A =
1

h1h2h3

∣∣∣∣∣∣∣∣∣∣
h1ê1 h2ê2 h3ê3

∂/∂u1 ∂/∂u2 ∂/∂u3

h1A1 h2A2 h3A3

∣∣∣∣∣∣∣∣∣∣
(52)

Using Eqs. (37), (38) and (43), the curl of the vector ~A in cartesian coordinate system is

given as

∇× ~A =

∣∣∣∣∣∣∣∣∣∣
î ĵ k̂

∂/∂x ∂/∂y ∂/∂z

Ax Ay Az

∣∣∣∣∣∣∣∣∣∣
(53)

7 Cylindrical Coordinates

In the cylindrical coordinate system (or the right circular cylindrical coordinate system),

the unit vectors are

ê1 = êρ

ê2 = êφ

ê3 = êz. (54)
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and the coordinate axes are

u1 = ρ

u2 = φ

u3 = z. (55)

Hence a position vector in this system can be represented as

~r = êρ(ρ cosφ) + êφ(ρ sinφ) + êzz. (56)

Hence the components of a vector in this system are

r1 = ρ cos(φ)

r2 = ρ sin(φ)

r3 = z. (57)

7.1 Metric Coefficients and Scale Factors

The metric coefficients for the orthogonal curvilinear coordinate system are given by Eq.

(9) as

gij =
3∑
i=1

(
∂rk
∂ui

)2

. (58)
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Using Eqs. (55), (56) and (57), the metric coefficients become

g11 =

{
∂(ρ cos(φ)

∂ρ

}2

+

{
∂(ρ sin(φ)

∂ρ

}2

+

{
∂z

∂ρ

}2

= cos2φ+ sin2φ

= 1

g22 =

{
∂(ρ cos(φ)

∂φ

}2

+

{
∂(ρ sin(φ)

∂φ

}2

+

{
∂z

∂φ

}2

= ρ2 cos2φ+ ρ2 sin2φ

= ρ2

g33 =

{
∂(ρ cos(φ)

∂z

}2

+

{
∂(ρ sin(φ)

∂z

}2

+

{
∂z

∂z

}2

= 1. (59)

Using these relations, the scale factors are given as

h1 = 1

h2 = ρ

h3 = 1. (60)

7.2 Gradient

Let Φ(ρ, φ, z) be a single valued scalar function in cylindrical coordinate system. Then

using Eqs. (54), (55) and (60), the general expression for the gradient

∇Φ =

{
ê1
h1

∂

∂u1
+
ê2
h2

∂

∂u2
+
ê3
h3

∂

∂u3

}
Φ. (61)

becomes

∇Φ = êρ
∂Φ

∂ρ
+ êφ

1

ρ

∂Φ

∂φ
+ êz

∂φ

∂z
. (62)
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7.3 Divergence

The general expression for the divergence of a vector in orthogonal curvilinear coordinates

is given as

∇. ~A =
1

h1h2h3

[
∂ (h2h3A1)

∂u1
+
∂ (h3h1A2)

∂u2
+
∂ (h1h2A3)

∂u3

]
, (63)

where the vector ~A(ρ, φ, z) is defined in cylindrical polar coordinates as

~A = êρAρ + êφAφ + êzAz. (64)

Then from the Eqs. (55) and (60) and assuming A1 = Aρ, A2 = Aφ and A3 = Az, the

divergence of the vector in the cylindrical polar coordinate system becomes

∇. ~A =
1

ρ

[
∂ (ρAρ)

∂ρ
+
∂ (Aφ)

∂φ
+
∂ (ρAz)

∂z

]
. (65)

7.4 Laplacian

From the general relation for the Laplacian in the orthogonal curvilinear coordinate system

given by Eq. (24), we have

∇2Φ =
1

h1h2h3

[
∂

∂u1

(
h2h3
h1

∂Φ

∂u1

)
+

∂

∂u2

(
h1h3
h2

∂Φ

∂u2

)
+

∂

∂u3

(
h1h2
h3

∂Φ

∂u3

)]
(66)

Using Eqs. (55) and (60), the expression for the Laplacian in cylindrical polar coordinates

becomes

∇2Φ =
1

ρ

[
∂

∂ρ

(
ρ
∂Φ

∂ρ

)
+

∂

∂φ

(
1

ρ

∂Φ

∂φ

)
+

∂

∂z

(
ρ
∂Φ

∂z

)]
(67)
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7.5 Curl

The general equation for the curl of a vector ~A in curvilinear coordiantes is given from Eq.

(36) as

∇× ~A =
1

h1h2h3

∣∣∣∣∣∣∣∣∣∣
h1ê1 h2ê2 h3ê3

∂/∂u1 ∂/∂u2 ∂/∂u3

h1A1 h2A2 h3A3

∣∣∣∣∣∣∣∣∣∣
(68)

Using Eqs. (54), (55) and (60) the curl of the vector ~A in cylindrical polar coordinate

system is given as

∇× ~A =
1

ρ

∣∣∣∣∣∣∣∣∣∣
êρ êφ êz

∂/∂ρ ∂/∂φ ∂/∂z

Aρ Aφ Az

∣∣∣∣∣∣∣∣∣∣
(69)

8 Spherical Polar Coordinates

In the Spherical Polar Coordinate System the unit vectors are

ê1 = êr

ê2 = êθ

ê3 = êφ. (70)

and the co-ordinate axes are

u1 = r

u2 = θ

u3 = φ. (71)
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Hence the components of the position vector ~r in this system are

r1 = r sinθ cosφ

r2 = r sinθ sinφ

r3 = r cosφ. (72)

8.1 Metric Coefficients and Scale Factors

The metric coefficients for the orthogonal curvilinear coordinate system are given by Eq.

(9) as

gij =
3∑
i=1

(
∂rk
∂ui

)2

. (73)

Using Eqs. (71) and (72), the metric coefficients become

g11 =

{
∂(r sinθ cosφ)

∂r

}2

+

{
∂(r sinθ sinφ)

∂r

}2

+

{
∂(r cosθ)

∂r

}2

,

= sin2θ
[
cos2φ+ sin2φ

]
+ cos2θ,

= 1,

g22 =

{
∂(r sinθ cosφ)

∂θ

}2

+

{
∂(r sinθ sinφ)

∂θ

}2

+

{
∂(r cosθ)

∂θ

}2

,

= r2 sin2θ
[
cos2φ+ sin2φ

]
+ r2 cos2θ,

= r2,

g33 =

{
∂(r sinθ cosφ)

∂φ

}2

+

{
∂(r sinθ sinφ)

∂φ

}2

+

{
∂(r cosθ)

∂φ

}2

,

= sin2θ
[
cos2φ+ sin2φ

]
,

= r2 sin2θ. (74)
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Using these relations, the scale factors are given as

h1 = 1

h2 = r

h3 = r sinθ. (75)

8.2 Gradient

Let Φ(r, θ, φ) be a single valued scalar function in spherical polar coordinate system. Then

using Eqs. (70), (71) and (75), the general expression for the gradient

∇Φ =

{
ê1
h1

∂

∂u1
+
ê2
h2

∂

∂u2
+
ê3
h3

∂

∂u3

}
Φ. (76)

becomes

∇Φ = êr

(
∂Φ

∂r

)
+ êθ

1

r

(
∂Φ

∂θ

)
+ êφ

1

r sin(θ)

(
∂Φ

∂φ

)
. (77)

8.3 Divergence

The general expression for the divergence of a vector in orthogonal curvilinear coordinates

is given as

∇. ~A =
1

h1h2h3

[
∂ (h2h3A1)

∂u1
+
∂ (h3h1A2)

∂u2
+
∂ (h1h2A3)

∂u3

]
, (78)

where the vector ~A(r, θ, φ) is defined in spherical polar coordinates as

~A = êrAr + êθAθ + êφAφ. (79)
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Then from the Eqs. (71) and (75) and assuming A1 = Ar, A2 = Aθ and A3 = Aφ, the

divergence of the vector in the spherical polar coordinate system becomes

∇. ~A =
1

r2 sinθ

[
∂ (r2 sinθAr)

∂r
+
∂ (r sinθAθ)

∂θ
+
∂ (r Aφ)

∂φ

]
. (80)

8.4 Laplacian

From the general relation for the Laplacian in the orthogonal curvilinear coordinate system

given by Eq. (24), we have

∇2Φ =
1

h1h2h3

[
∂

∂u1

(
h2h3
h1

∂Φ

∂u1

)
+

∂

∂u2

(
h1h3
h2

∂Φ

∂u2

)
+

∂

∂u3

(
h1h2
h3

∂Φ

∂u3

)]
(81)

Using Eqs. (71) and (75), the expression for the Laplacian in spherical polar coordinates

becomes

∇2Φ =
1

r2 sinθ

[
∂

∂r

(
r2sinθ

∂Φ

∂r

)
+

∂

∂θ

(
sinθ

∂Φ

∂θ

)
+

∂

∂φ

(
1

sinθ

∂Φ

∂φ

)]
(82)

8.5 Curl

The general equation for the curl of a vector ~A in curvilinear coordiantes is given from Eq.

(36) as

∇× ~A =
1

h1h2h3

∣∣∣∣∣∣∣∣∣∣
h1ê1 h2ê2 h3ê3

∂/∂u1 ∂/∂u2 ∂/∂u3

h1A1 h2A2 h3A3

∣∣∣∣∣∣∣∣∣∣
(83)
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Using Eqs. (70), (71) and (75) the curl of the vector ~A in spherical polar coordinate system

is given as

∇× ~A =
1

r2 sinθ

∣∣∣∣∣∣∣∣∣∣
êr r êθ rsinθ êφ

∂/∂r ∂/∂θ ∂/∂φ

Ar Aθ Aφ

∣∣∣∣∣∣∣∣∣∣
(84)

9 Summary

The equivalent expressions for the various quantities in the different co-ordinate systems

can be summarised in a tabular form as given.
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