Functional dependencies in DBMS

- A functional dependency is a constraint that specifies the relationship between two sets of attributes where one set can accurately determine the value of other sets.
- It is denoted as $X \to Y$, where X is a set of attributes that is capable of determining the value of Y.
- The attribute set on the left side of the arrow, **X** is called **Determinant**, while on the right side, **Y** is called the **Dependent**.

Example:

Employee number	Employee Name	Salary	City
1	Dana	50000	San Francisco
2	Francis	38000	London
3	Andrew	25000	Tokyo

Rules of Functional Dependencies

Below are the three most important rules for Functional Dependency in Database:

- Reflexive rule –. If X is a set of attributes and Y is_subset_of X, then X holds a value of Y.
- Augmentation rule: When x -> y holds, and c is attribute set, then ac -> bc also holds. That is adding attributes which do not change the basic dependencies.
- Transitivity rule: This rule is very much similar to the transitive rule in algebra if x -> y holds and y -> z holds, then x -> z also holds. X -> y is called as functionally that determines y.

Types of Functional Dependencies in DBMS

There are mainly four types of Functional Dependency in DBMS. Following are the types of Functional Dependencies in DBMS:

- Multivalued Dependency
- Trivial Functional Dependency
- Non-Trivial Functional Dependency
- Transitive Dependency

Multivalued Functional Dependency

In Multivalued functional dependency, entities of the dependent set are not dependent on each other.

i.e. If $\mathbf{a} \rightarrow \{\mathbf{b}, \mathbf{c}\}$ and there exists **no functional dependency** between **b** and **c**, then it is called a multivalued functional dependency.

For example,

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18
45	abc	19

Here, roll_no \rightarrow {name, age} is a multivalued functional dependency, since the dependents name & age are not dependent on each other (i.e. name \rightarrow age or age \rightarrow name doesn't exist !)

Trivial Functional Dependency

In **Trivial Functional Dependency**, a dependent is always a subset of the determinant. i.e. If $X \rightarrow Y$ and Y is the subset of X, then it is called trivial functional dependency

For example,

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18

Here, {**roll_no, name**} \rightarrow **name** is a trivial functional dependency, since the dependent **name** is a subset of determinant set {**roll_no, name**} Similarly, **roll_no** \rightarrow **roll_no** is also an example of trivial functional dependency.

Non-trivial Functional Dependency

In **Non-trivial functional dependency**, the dependent is strictly not a subset of the determinant.

i.e. If $X \rightarrow Y$ and Y is not a subset of X, then it is called Non-trivial functional dependency.

For example,

roll_no	name	age
42	abc	17
43	pqr	18
44	xyz	18

Here, $roll_no \rightarrow name$ is a non-trivial functional dependency, since the dependent name is not a subset of determinant roll_no Similarly, {roll_no, name} \rightarrow age is also a non-trivial functional dependency, since age is not a subset of {roll_no, name}

Transitive Functional Dependency

In transitive functional dependency, dependent is indirectly dependent on determinant. i.e. If $\mathbf{a} \rightarrow \mathbf{b} \& \mathbf{b} \rightarrow \mathbf{c}$, then according to axiom of transitivity, $\mathbf{a} \rightarrow \mathbf{c}$. This is a **transitive functional dependency**

enrol_no	name	dept	building_no
42	abc	СО	4
43	pqr	EC	2
44	xyz	IT	1

For example,

enrol_no	name	dept	building_no
45	abc	EC	2

Here, $enrol_no \rightarrow dept$ and $dept \rightarrow building_no,$

Hence, according to the axiom of transitivity, **enrol_no** \rightarrow **building_no** is a valid functional dependency. This is an indirect functional dependency, hence called Transitive functional dependency.