Projectile Motion

January 22, 2019

1 Introduction

The motion of a body that is projected from a point of the earth so as to move along a predetermined path is called as projectile motion. Examples of projective motion are

- 1. Firing of rockets.
- 2. Firing of missiles to hit enemy targets etc..,

Figure 1: Projectile Motion

To study projectile motion, the following assumptions are made.

- 1. The resistance offered by air do the projected particle is negligibly small.
- 2. The acceleration due to gravity g remains a constant throughout the path of motion.

2 Parameters of Projectile Motion

Some of the quantities involved in projectile motion are listed below.

1. Angle of Projection (α):

The angle which the direction of the projection makes with the horizontal axis is called as the *angle of projection* α .

2. Trajectory of the Projectile Particle:

The path described by the particle during its motion is called as *trajectory of the particle*.

3. Range of the Particle (R):

The distance between the point of projection and the point at which the projectile particle meets the horizontal plane is called as the *range* of the particle.

4. Time of Flight (T):

The interval of time from the instant of projection to the instant the particle hits the horizontal plane is called as the *time of flight*.

5. Greatest Height (h):

The point on the trajectory which has the maximum distance from the horizontal plane is called as the *greatest height*.

3 Theory of Projectile Motion

For a particle executing projectile motion, we find that the path described by the particle is a parabola. To study projectile motion mathematically, we use three equations of the kinematics of motion, namely

$$v = u + at \tag{1}$$

$$s = ut + \frac{1}{2}at^2 \tag{2}$$

$$v^2 = u^2 + 2as \tag{3}$$

where

 $u \longrightarrow \text{initial velocity},$

 $v \longrightarrow$ final velocity,

 $t \longrightarrow \text{time of flight},$

 $a \longrightarrow$ acceleration and

 $s \longrightarrow displacement$

of the projectile particle.

3.1 Trajectory or Path of a Projectile Particle

Let us consider a particle projected from a point on the ground with a velocity u along a direction making an angle α with the horizontal as shown in Fig. (1). The velocity u of the particle can be resolved into horizontal and vertical components as

$$u_h = u\cos(\alpha) \tag{4}$$

$$u_v = u \sin(\alpha). \tag{5}$$

The horizontal and vertical distances travelled by the particle can be determined using Eqn. (2). For the distance along the horizontal direction we consider, the displacement $s \equiv x$, and acceleration a = 0 while for the vertical direction, the displacement is taken as $s \equiv y$ and acceleration a = -g, where g is the acceleration due to gravity. The negative sign indicates that the projectile is moving against the gravitational force of attraction. Thus from Eqn. (2) we have

$$x = u\cos(\alpha)t \tag{6}$$

$$y = u\sin(\alpha)t - \frac{1}{2}gt^2 \tag{7}$$

Rearranging Eqn. (6), the time taken for the projectile particle to reach a point, say R is

$$t = \frac{x}{u\cos(\alpha)} \tag{8}$$

Substituting Eqn. (8) in Eqn. (7) gives

$$y = u\sin(\alpha)\frac{x}{u\cos(\alpha)} - \frac{1}{2}g\left\{\frac{x}{u\cos(\alpha)}\right\}^2$$

or

$$y = \tan(\alpha) x - \left\{ \frac{g}{2u^2 \cos^2(\alpha)} \right\} x^2$$
(9)

The above equation is similar to the equation of a parabola, namely

$$y = ax + bx^2 \tag{10}$$

where we have assumed the coefficients as

$$a = tan(\alpha)$$
 and (11)

$$b = -\left\{\frac{g}{2u^2 \cos^2(\alpha)}\right\} \tag{12}$$

3.2 Expressions for the Parameters of the Projectile Motion

The mathematical expressions for some of the parameters of the projectile particle during its motion can be derived as follows.

1. Instantaneous Velocity of the Projectile Particle v(t):

The velocity of the projectile particle at a point, say R on the trajectory after a time t (refer Fig. (1)) can be given from Eqn. (3). Let us assume $s \equiv y$ and a = -g, then substituting Eqn. (7)

$$v^{2} = u^{2} + 2(-g) \left\{ u \sin(\alpha)t - \frac{1}{2}gt^{2} \right\}$$

or
$$v = \sqrt{u^{2} - 2ug \sin(\alpha)t + g^{2}t^{2}}.$$
 (13)

2. Angle of Inclination (θ) :

The angle which the direction of the projection makes with the horizontal axis is called as the *angle of projection* α . However this *angle of projection* will change as the projectile particle moves along its trajectory. Hence the angle of inclination at a point R on the trajectory at an instant of time t be given as α . We know $tan(\theta) = \left\{\frac{y}{x}\right\}$. Substituting Eqns. (6) & (7) gives

$$\tan(\theta) = \left\{ \frac{u\sin(\alpha)t - \frac{1}{2}gt^2}{u\cos(\alpha)t} \right\} \quad or$$
$$\theta = \tan^{-1}\left\{ \frac{u\sin(\alpha) - \frac{1}{2}gt}{u\cos(\alpha)} \right\}. \tag{14}$$

3. Greatest Height Reached by the Projectile h:

The point on the trajectory which has the maximum distance from the horizontal plane (AM) is called as the *greatest height h*. At the point of greatest height, the final velocity of the particle is zero. Hence assuming v = 0, $u = u_v = u \sin(\alpha)$, a = -g and y = h, Eqn. (3) gives

$$0 = u_v^2 - 2gh \quad \text{or}$$

$$h = \frac{u_v^2}{2g} \quad \text{or}$$

$$h = \frac{u^2 \sin^2(\alpha)}{2g}.$$
(15)

4. Time of Flight T:

The interval of time from the instant of projection to the instant the particle hits the horizontal plane is called as *the time of flight T*. This can be calculated by the relation

$$T = t_1 + t_2 \tag{16}$$

where $t_1 \longrightarrow$ is the time taken for the upward motion of the projectile. For the upward motion the displacement along the vertical direction is given by

$$y = usin(\alpha)t_1 - \frac{1}{2}gt_1^2$$

Differentiating this equation gives

$$\frac{dy}{dt} = u\sin(\alpha) - gt_1$$

If height of the projectile particle is a maximum, then its time derivative should be equal to zero. Hence

$$0 = u \, \sin(\alpha) - gt_1$$

Rearranging the above equation gives

$$t_1 = \left\{ \frac{u \sin(\alpha)}{g} \right\}. \tag{17}$$

For the downward motion, we have $t = t_2$, u = 0, a = g and $v = u_y$ or $v = u \sin(\alpha)$. Hence from Eqn. (1)

$$t_2 = \left\{ \frac{u \sin(\alpha)}{g} \right\} \tag{18}$$

where $t_2 \longrightarrow$ is the time taken for the downward motion of the projectile.

Therefore substituting Eqns. (17) & (18) in Eqn. (16), we have the total time of flight as

$$T = \frac{u\sin(\alpha)}{g} + \frac{u\sin(\alpha)}{g}$$

Therefore, the total time of flight of the projectile particle is

$$T = \frac{2u\sin(\alpha)}{g} \tag{19}$$

5. Range of the Particle on the Horizontal Plane R:

The maximum distance covered by the particle in the horizontal direction during the entire time of its flight is called as the *horizontal range* of the particle. It is given as

$$R = \frac{2u^2 \sin(2\alpha)}{g} \tag{20}$$

Proof:

From Eqn. (10), if x = R and y = 0, we have

$$0 = aR + bR^{2} \quad \text{or}$$
$$bR^{2} = aR \quad \text{or}$$
$$R = \frac{a}{b} \quad (21)$$

Substituting Eqns. (9) and (10) in the Eqn. (20), we have

$$R = \frac{a}{b}$$

$$= \frac{\tan(\alpha)}{-\left\{\frac{g}{2u^2\cos^2(\alpha)}\right\}}$$

$$= \frac{2u^2\tan(\alpha)\cos^2(\alpha)}{g} \quad \text{or}$$

$$R = \frac{2u^2\sin(\alpha)\cos(\alpha)}{g}$$
(22)

We know $\sin(\alpha)\cos(\alpha) = \sin(2\alpha)$. Substituting this in the above equation gives

$$R = \frac{2u^2 \sin(2\alpha)}{g}$$

Hence the proof.