Relational Algebra

S.PRABHAVATHI

ASSISTANT PROFESSOR
DEPARTMENT OF COMPUTER SEIENCE \& IT
JAMAL MOHAMED COLLEGE
TRICHY - 620020

Relational Algebra

\checkmark Procedural language
\checkmark The fundamental operations in the relational algebra

* SIX BASIC OPERATORS
- select: σ
- project: Π
\bigcirc union: \cup
- set difference: -
- Cartesian product: x
- rename: ρ
\checkmark The operators take one or two relations as inputs and produce a new relation as a result.
* SEVERAL OTHER OPERATIONS
- Set intersection,
- Natural join,
- Division
- Assignment
$>$ The select, project, and rename operations are called unary operations, because they operate on one relation.
$>$ Other 3 operations operate on pairs of relations.
- union:
- set difference: -
- Cartesian product: x - This can be called binary operation.

1.Select Operation

\Rightarrow The select operation sects tuples that satisfy a given predicate.
\Rightarrow We use the lowercase Greek letter sigma(σ) to denote selection.
\Rightarrow Predicate appears as a subscript to σ.
Notation: $\sigma p(r)$
p is called the selection predicate

Defined as:

$$
\sigma P(\boldsymbol{r})=\{t \mid t \in r \text { and } p(t)\}
$$

Where p is a formula in propositional calculus consisting of terms
connected by : $\wedge($ and $), \vee(\mathbf{o r}), \neg(\mathbf{n o t})$

Each term is one of:

<attribute> op <attribute> or <constant>
Combine several predicates where $\boldsymbol{o p}$ is one of: $=, \neq,>, \geq .<. \leq$

Example of selection:
branch_name="Perryridge"(account)

loan-number	branch-name	amount
L-11	Round Hill	900
L-14	Downtown	1500
L-15	Perryridge	1500
L-16	Perryridge	1300
L-17	Downtown	1000
L-23	Redwood	2000
L-93	Mianus	500

Figure 3.6 The loan relation.

account-number	branch-name	balance
A-101	Downtown	500
A-102	Perryridge	400
A-201	Brighton	900
A-215	Mianus	700
A-217	Brighton	750
A-222	Redwood	700
A-305	Round Hill	350

Figure 3.1 The account relation.

Result of selection

Accoumt - number Select Operation	Branch name	Balance
A102	Perryridge	400

Example

1. We can find all tuples in more than $\$ 1200$ by writing σ amount >1200 (loan)
σ branch - name $="$ Perryridge" \wedge amount >1200 (loan) Comparisons between two attributes.

Three attributes

customer-name, banker - name and loan -officer.
Banker is the loan officer - loan that belong to some customer.
To find all customers who have the same name as their loan officer

$$
\sigma \text { cus-name = banker }- \text { name (loan-officer) }
$$

Special value null indicates.
Any comparisons involving a null value evaluate to false.

2.Project Operation

Notation:

$$
\Pi_{A_{1}, A_{2}, \ldots, A_{k}}(r)
$$

where $A 1, A 2$ are attribute names and r is a relation name.
\square List all account number and the balance of the account, but not care about the branch name.
\square Projection operation is a unary operation that returns its argument relation with certain attributes left out.
\square Any duplicate rows are eliminated.
\square Projection is denoted b Greek letter pi (π)
\square We list those attributes that we wish to appear in the result as a subscript to π. The argument relation follows in parentheses.

Example:

COMPOSITION OF RELATIONAL OPERATIONS

- The fact that the result of a relational operation is itself a relation is important.
- More complicated query "find those customers who live in " Trichy" we write:
π customer - name (σ c customer - city $=$ " Perryridge " (customer))
- relational algebra is just like composing arithmetic operations (such +, -, * and \div) into arithmetic expressions.

3.Union Operation

Notation: $r \cup s$
Defined as:

$$
r \cup s=\{t \mid t \in r \text { or } t \in s\}
$$

For $r \cup s$ to be valid.

1. r, s must have the same arity (same number of attributes)
2. The attribute domains must be compatible (example: 2nd column of r deals with the same type of values as does the 2 nd column of s)
\Rightarrow A query to find the names of all bank customers who have either on account or a loan (or) both.
\Rightarrow We need the information in depositor relation and in the borrower relation.
Find the names of all customers with a loan in the bank:

$$
\pi \text { customer - name (borrower) }
$$

Find the names of all customers with an account in the bank:

$$
\pi \text { customer - name (depositor) }
$$

\Rightarrow We need the union of these two sets;
\Rightarrow All customer name that appear in either or both of two relations.
\Rightarrow Binary operation union, denoted, as in set theory, by U.
\Rightarrow Names of all customer who have either a loan or an account

Example: to find all customers with either an account or a loan
Пcustomer_name (depositor) \cup Пcustomer_name (borrower)

- relations are sets, duplicate values are eliminated.
- Unions are taken between compatible relations.

Ilcustomer name (depositor) u II customer name (borrower)

customer-name	loan-number
Adarns	L-16
Curry	L-93
Hayes	L-15
Jackson	L-14
Jones	L-17
Smith	L-11
Smith	L-23
Williams	L-17

Figure 3.7 The borrower relation.

customer-name	account-number
Hayes	A-102
Johnson	A-101
Johnson	A-201
Jones	A-217
Lindsay	A-222
Smith	A-215
Turner	A-305

Figure 35 The depositor relation.

4.Set Difference Operation

- Notation $r-s$
- Defined as:

$$
\text { - } r-s=\{t \mid t \in r \text { and } t \notin s\}
$$

- Set differences must be taken between compatible relations.
- r and s must have the same arity
- attribute domains of r and s must be compatible
- Set difference operation, denoted by -, allows us to find tuples that are in one relation but are not in another.
- The expression $\mathrm{r}-\mathrm{s}$ results in a relation containing those tuples in r but not in s .
- Customer with an account but not loan

Customer - name
Johnson
Turner
Lindsay

- Find all customers in bank, who have an account but not a loan. π customer - name (depositor) $-\pi$ customer - name(borrower)
- set difference are taken between compatible relations.

Set Difference Operation - Example

- Relations r, s :

s
- $r-s$.

A	B
α	1
β	1

5. Cartesian-Product Operation

- Denoted by a cross (x),
- Combine information from any two relations.
- Cartesian product of relations r1 \& r2 and r1 * r2.
- Cartesian product of a set of domains.
- Relation schema for $\mathrm{r}=$ borrower * loan is
- (borrower. customer - name, borrower. Loan - number, loan. Branch - name, loan. Loan - number, loan . amount

Cartesian-Product Operation - Example

- Relations r,

C	D	E
α	10	a
β	10	a
β	20	b
γ	10	b

- $r \times s$:

A	B	C	D	E
α	1	α	10	a
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

6.Rename Operation

> Allows us to name, and therefore to refer to, the results of relational-algebra expressions.
$>$ Allows us to refer to a relation by more than one name.
$>$ Example:

$$
\rho \quad x(E)
$$

returns the expression E under the name X
$>$ If a relational-algebra expression E has arity n, then
returns the result of expression E under the name X, and with the
attributes renamed to $A 1, A 2, \ldots ., A n$.
\square RENAME operation - which can rename either the relation name or the attribute names, or both
The general RENAME operation ρ can be expressed by any of the following forms:

- $\rho_{\mathrm{s}}(\mathrm{R})$ changes:
- the relation name only to S
- $\rho_{(\mathrm{B} 1, \mathrm{~B} 2, \ldots, \mathrm{Bn})}(\mathrm{R})$ changes:
- the column (attribute) names only to $\mathrm{B} 1, \mathrm{~B} 1, \ldots . . \mathrm{Bn}$
- $\rho_{\mathrm{S}(\mathrm{B} 1, \mathrm{~B} 2, \ldots, \mathrm{Bn})}(\mathrm{R})$ changes both:
- the relation name to S , and
- the column (attribute) names to B1, B1,Bn

7.DIVISION:

(a)

SSN_PNOS

Essn	Pno
123456789	1
123456789	2
666884444	3
453453453	1
453453453	2
333445555	2
333445555	3
333445555	10
333445555	20
999887777	30
999887777	10
987987987	10
987987987	30
987654321	30
987654321	20
888665555	20

(b)

R

A	B
a1	b1
a2	b1
a3	b1
a4	b1
a1	b2
a3	b2
a2	b3
a3	b3
a4	b3
a1	b4
a2	b4
a3	b4

S

T

Figure 6.8
The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) $T \leftarrow R \div S$.

Examples of Division A / B

sno	pno
s1	p1
s1	p2
s1	p3
s1	p4
s2	p1
s2	p2
s3	p2
S4	p2
s4	p4

sno
$A / B 2$
s1
$A / B 3$

8.JOIN

Natural -Join

employee-name	street	city		
Coyote	Toon	Hollywood		
Rabbit	Tunnel	Carrotville		
Smith	Revolver	Death Valley		
Williams	Seaview	Seattle		
employee-name branch-name salary Coyote Mesa 1500 Rabbit Mesa 1300 Gates Redmond 5300 Williams Redmond 1500			$.=$	Ren
:---				

employerame	stred	city	brambhame	slary
Copote	Ton	Hollywod	Nesa	150
Rabbit	Tumed	Caroville	Nesa	130
Williams	Saxien	Seatte	Redmond	150

Figure 3.32 The result of employee f f-worls.
jure 3.31 The employee and ft-works relations.
employee $\backslash f$ f-works
The result of this expression appears in Figure 3.32. Notice that we have lost the street and city information about Smith, since the tuple describing Smith is absent from theft-works relation; similarly, we have lost the branch name and salary information about Gates, since the tuple describing Gates is absent from the employee relation.

Types of Outer - Join

We can use the outer-poin operation to avoid this loss of information. There are actually three forms of the operation: Cef outer piin, denoted IX; righto ovier join, denoted C : and full outery youn, denoted X . All three forms of outer join compute the join, and add extra tuples to the result of the join. The results of the expressions

The left outer join ((X) takes all tuples in the left relation that did not match with any tuple in the right relation, pads the tuples with null values for all other attributes from the right relation, and adds them to the result of the natural join. In Figure 3.33, tuple (Smith, Revolver, Death Valley, null, null) is such a tuple. All information from the left relation is present in the result of the left outer join.

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null

Figure 3.33 Result of employee $\exists \mathrm{X} f$-works.

employac-nmme	struat	city
Coyote	Toon	Hollywood
Rabbit	Tunnel	Carrotville
Smith	Revolver	Death Valley
Williams	Seaview	Seattle

The right outer join $(\bowtie \boxed{)}$) is symmetric with the left outer join: It pads tuples from the right relation that did not match any from the left relation with nulls and adds them to the result of the natural join. In Figure 3.34, tuple (Gates, null, null, Redmond, 5300) is such a tuple. Thus, all information from the right relation is present in the result of the right outer join.

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Gates	null	null	Redmond	5300

Figure 3.34 Result of employee $\ltimes f t$-works.

Full outer join

The full outer join (\mathbb{Z}) does both of those operations, padding tuples from the left relation that did not match any from the right relation, as well as tuples from the right relation that did not match any from the left relation, and adding them to the result of the ioin. Figure 3.35 shows the result of a full outer ioin.

employee-name	street	city	branch-name	salary
Coyote	Toon	Hollywood	Mesa	1500
Rabbit	Tunnel	Carrotville	Mesa	1300
Williams	Seaview	Seattle	Redmond	1500
Smith	Revolver	Death Valley	null	null
Gates	null	null	Redmond	5300

Figure 3.35 Result of employee 】. ft-works.

