
A.M.S. Zunaitha Sulthana

Assistant Professor

Department of Computer Science & IT

Jamal Mohamed College (Autonomous)

Tiruchirappalli-620020

Web Programming

20UIT5CC9

Unit III

 Basic Concepts

 JavaScript Syntax Rules

 Understanding the Document Object Model

 Using Window Objects

 Working with the Document Object

 Working with the Location Object

 Working with DOM Nodes

 Using JavaScript Variables

 Understanding Expressions and Operators

 Data Types in JavaScript

 Using String Objects

 Using Numeric Arrays

 Using String Arrays.

 JavaScript is a scripting language most often

used for client-side web development.

 Using JavaScript we can create interactive

user interface in a web page.

 Eg: menu, pop-up alert, windows etc.

 Manipulate web content dynamically.

<html>

<body>

<script type="text/javascript">

document.write("JavaScript is a simple language for javatpoint
learners");

</script>

</body>

</html>

 The script tag specifies that we are using JavaScript.
 The text/javascript is the content type that provides information to

the browser about the data.
 The document.write() function is used to display dynamic content

through JavaScript.

 Statements : A statement is a section of code that

performs a single action.

 A semicolon marks the end of a statement.

Eg:

 hours = now.getHours();

 mins = now.getMinutes();

 secs = now.getSeconds();

 var foo = ’hello world ’;

 Combining Tasks with Functions.

A statement that uses a function.

Eg:

 document.write(“Testing.”);

 text = prompt(“Enter some text.”);

 This is an example of a function.

 Functions provide a simple way to handle a task, such
as adding output to a web page.

 JavaScript includes a wide variety of built-in functions

Variables

 Variables are containers that can store a number, a

string of text, or another value.

 JavaScript variables can contain numbers, text strings,

and other values.

Example: The following statement creates a variable

called fred and assigns it the value 27:

 var fred = 27;

Understanding Objects

 JavaScript also supports objects. Like variables, objects can
store data—but they can store two or more pieces of data at
once.

 The items of data stored in an object are called the properties
of the object.

 JavaScript supports three kinds of objects:
1. Built-in objects: Date, Array, String & Math.
2. DOM (Document Object Model):Represent various
components of the browser and the current HTML document

For example ,alert() method of window object.
3. Custom Objects : Objects that you create yourself.

For example, you could create a person object.

Conditionals

 JavaScript supports conditional statements, which

enable you to answer questions like

 if (count==1) alert(“The countdown has reached 1.”);

 This compares the variable count with the constant 1

and displays an alert message to the user if they are the

same.

Loops

 To create loops, or groups of statements that repeat a

certain number of times.

 For example, these statements display the same alert

10 times, greatly annoying the user:

for (i=1; i<=10; i++) {

alert(“Yes, it’s yet another alert!”);

}

Event Handlers

 Event handlers are scripts that handle events .

 They tell the browser what to do when a certain event

occurs. They include such events as “When the mouse

button clicks” and “When this page is finished

loading.”

 Eg : <img src=”button.gif”

onMouseOver=”highlight();”>

Variable, Object, and Function Names

 Names can include uppercase letters, lowercase letters,

numbers, and the underscore (_) character.

 Names must begin with a letter or underscore.

 JavaScript is case sensitive: score, Score, and SCORE

would be considered three different variables.

Case Sensitivity

 JavaScript keywords, such as for and if, are always

lowercase.

 Built-in objects, such as Math and Date, are capitalized.

 DOM object names are lowercase, but their methods are

often a combination of capitals and lowercase.

Eg:

 toLowerCase and getElementById.

Reserved Words

 variable names not be reserved words. These include

the words that make up the JavaScript language (such

as if and for), DOM object names (such as window and

document), and built-in object names (such as Math

and Date).

Spacing

 Blank space (known as whitespace by programmers) is

ignored by JavaScript.

 The DOM is not part of JavaScript or any other programming language
rather, it’s an API (Application programming interface) built in to the
browser.

 These objects are organized into a tree-like structure and represent all
the content and components of a web document.

 The objects in the DOM have properties—variables that describe the
web page or document

 methods—functions that enable you to work with parts of the web
page.

 Examples
◦ Properties: document.alinkColor, document.URL,

document.forms[], document.links[], document.anchors[]

◦ Methods: document.write(document.referrer)
 These change the content of the page!

•At the top of the browser object hierarchy is the

window object, which represents a browser window.

•The window object is the parent object for all the

objects.

 The document object represents a web document or

page.

 Web documents are displayed within browser windows,

the document object is a child of the window object.

 Because the window object always represents the

current window (the one containing the script) , you

can use window.document to refer to the current

document.

 document.URL specifies the document’s URL.
 document.title lists the title of the current page, defined by

the HTML <title> tag.
 document.referrer is the URL of the page the user was

viewing prior to the current page—usually, the page with a
link to the current page.

 document.lastModified is the date the document was last
modified. This date is sent from the server along with the
page.

 document.cookie enables you to read or set a cookie for the
document.

 document.images returns a collection of images used in the
document.

<html xmlns=”http://www.w3.org/1999/xhtml” xml:lang=”en”>

<head>

<title>Displaying the Last Modified Date</title>

</head>

<body>

<h1>Displaying the Last Modified Date</h1>

<p>This page was last modified on:</p>

<script type=”text/javascript”>

document.write(document.lastModified);

</script>

</body>

</html>

Writing Text in a Document

 The document.write method prints text as part of the

HTML in a document window.

 writeln, also prints text, but it also includes a newline

(\n) character at the end.

 The document.write method can be used within a

<script> tag in the body of an HTML document.

Using Links and Anchors

 Another child of the document object is the link object.

There can be multiple link objects in a document. Each

one includes information about a link to another

location or an anchor.

 You can access link objects with the links array.

 Each member of the array is one of the link objects in

the current page. A property of the array,

document.links.length, indicates the number of links in

the page.

Eg:

 link1 = links[0].href;

 The statement assigns the entire URL of the first link to

the variable link1.

 The anchor objects are also children of the document

object.

 Each anchor object represents an anchor in the current

document—a particular location that can be jumped to

directly.

 A third child of the window object is the location

object. This object stores information about the current

URL stored in the window.

 For example, the following statement loads a URL into

the current window:

 window.location.href=”http://www.google.com”;

 The href property used in this statement contains the

entire URL of the window’s current location

 location.protocol is the protocol part of the URL (http: in

the example).

 location.hostname is the host name of the URL

(www.google.com in the example).

 location.port is the port number of the URL (80 in the

example).

 location.pathname is the filename part of the URL (search

in the example).

 location.search is the query portion of the URL, if any

(q=javascript in the example).

 location.assign() loads a new document when used as
follows:

location.assign(“http://www.google.com”)

 location.reload() reloads the current document. This is the
same as the Reload button on the browser ’s toolbar. If you
optionally include the true parameter, it will ignore the
browser ’s cache and force a reload whether the document
has changed or not.

 location.replace() replaces the current location with a new
one. This is similar to setting the location object’s
properties yourself.

Basic Node Properties

 Each node also has a number of basic properties that

you can examine or set.

These include the following:

 nodeName is the name of the node (not the ID). For

nodes based on HTML tags, such as <p> or <body>,

the name is the tag name: p or body.

 For the document node, the name is a special code:

#document.

 Similarly, text nodes have the name #text.

 nodeType is an integer describing the node’s type: 1 for

normal HTML tags, 3 for text nodes, and 9 for the

document node.

 nodeValue is the actual text contained within a text

node. This property is not valid for other types of

nodes.

 innerHTML is the HTML content of any node. You can

assign a value including HTML tags to this property

and change the DOM child objects for a node

dynamically.

Node Relationship Properties

 The basic properties described previously, each node has a
number of properties that describe its relation to other
nodes.

 These include the following:

 firstChild :Is the first child object for a node. For nodes that
contain text, such as h1 or p, the text node containing the
actual text is the first child.

 lastChild is the node’s last child object.

 childNodes is an array that includes all of a node’s child
nodes. You can use a loop with this array to work with all
the nodes under a given node.

Document Methods

 The document node’s methods include the following:

 getElementById(id) returns the element with the
specified id attribute.

 getElementsByTagName(tag) returns an array of all of
the elements with a specified tag name. You can use the
wildcard * to return an array containing all the nodes in
the document.

 createTextNode(text) creates a new text node containing
the specified text, which you can then add to the
document.

Node Methods

 Each node within a page has a number of methods
available. Which of these are valid depends on the
node’s position in the page and whether it has parent or
child nodes.

These include the following:

 appendChild(new) appends the specified new node
after all of the object’s existing nodes.

 insertBefore(new, old) inserts the specified new child
node before the specified old child node, which must
already exist.

Choosing Variable Names
 Variables are named containers that can store data (for example, a number, a text string, or an

object).

There are specific rules you must follow when choosing a variable name:

 Variable names can include letters of the alphabet , both upper and lowercase.

 They can also include the digits 0–9 and the underscore (_) character.

 Va riable names cannot include spaces or any other punctuation characters.

 The first character of the variable name must be either a letter or an underscore.

 Variable names are case sensitive — totalnum, Totalnum, and TotalNum are separate

variable names.

 There is no official limit on the length of variable names, but they must fit within one line.

 Using these rules, the following are examples of valid variable names:

◦ total_number_of_fish

◦ LastInvoiceNumber

◦ a

◦ _var39

Using Local and Global Variables

 Global variables have the entire script as their scope.
They can be used anywhere, even within functions.

 Local variables have a single function as their scope.
They can be used only within the function they are
created in.

 To create a global variable , declare it in the
main script , outside any functions.

 use the var keyword to declare the variable, as in this

example:

var students = 25;

 A local variable belongs to a particular function. Any

variable you declare with the var keyword in a function

is a local variable

 To create a local variable with in a function , you

must use the var keyword.

Assigning Values to Variables

The equal sign to assign a value to a variable.

Example, statement assigns the value 40 to the variable lines:

lines = 40;

lines = lines + 1;

the following shorter version of the preceding example:

lines += 1;

Similarly,

subtract a number from a variable using the -= operator:

lines -= 1;

 JavaScript also includes the increment and decrement
operators, ++ and --.

 lines++;

 If the operator is after the variable name, the increment or
decrement happens after the current expression is evaluated.

 If the operator is before the variable name, the increment or
decrement happens before the current expression is
evaluated.

 The following two statements have different effects:

 alert(lines++);

 alert(++lines);

Lists the operators from lowest to highest

precedence, and operators with highest precedence
are evaluated first.

Operator Precedence

 JavaScript uses rules of operator precedence to decide how
to calculate the values.

Example

 result = 4 + 5 * 3;

 If you try to calculate this result, there are two ways to do it.
You could multiply 5 * 3 first and then add 4 (result: 19) or
add 4 + 5 first and then multiply by 3 (result: 27).

 JavaScript solves this dilemma by following the precedence
rules: Because multiplication has a higher precedence than
addition, it first multiplies 5 * 3 and then adds 4, producing
a result of 19.

 Sometimes operator precedence doesn’t produce the

result you want. For example, consider this statement:

 result = a + b + c + d / 4;

 You can control precedence by using parentheses

. To calculate an average:

 result = (a + b + c + d) / 4;

<!doctype html>
<html>
<body>
<script>
var numOne=12, numTwo=10, res;
res = numOne + numTwo;
document.write("Add = " + res + "
");
res = numOne - numTwo;
document.write("Subtract = " + res + "
");
res = numOne * numTwo;
document.write("Multiply = " + res + "
");

</script>
</body>
</html>

Out Put

Add = 22
Subtract =2
Multiply = 120

 In some computer languages, you have to specify the

type of data a variable will store, for example, a

number or a string.

 In JavaScript, you don’t need to specify a data type in

most cases. However, you should know the types of

data JavaScript can deal with.

 Numbers, such as 3, 25, or 1.4142138—JavaScript

supports both integers and floating-point numbers.

 Boolean, or logical values—These can have one of two

values: true or false. These are useful for indicating

whether a certain condition is true.

 Strings, such as “I am a jelly doughnut”—These consist

of one or more characters of text.

 The null value, represented by the keyword null—This

is the value of an undefined variable..

 JavaScript keeps track of the data type currently stored in each
variable, it doesn’t restrict you from changing types midstream.

 For example, suppose you declared a variable by assigning it a
value:

 total = 31;

 This statement declares a variable called total and assigns it the
value of 31.

 This is a numeric variable. Now suppose you changed the value
of total:

 total = “albatross”;

 This assigns a string value to total, replacing the numeric value.

 JavaScript will not display an error

<html>

<head>

<title> GfG typeof example </title>

</head>

<body>

<script type="text/javascript">

var a = 17;

var b = “javascript";

var c = "";

var d = null;

document.write("Type of a = " + (typeof a));

document.write("
");

document.write("Type of b = " + (typeof b));

document.write("
");

document.write("Type of c = " + (typeof c));

document.write("
");

document.write("Type of d = " + (typeof d));

document.write("
");

document.write("Type of e = " + (typeof e));

document.write("
");

</script>

</body>

</html>

Output:

Type of a = number

Type of b = string

Type of c = string

Type of d = object

Type of e = undefined

 Strings store a group of text characters and are named

similarly to other variables.

 test = “This is a test”;

Creating a String Object

 There are two ways to create a new String object

test = “This is a test”;

test = new String(“This is a test”);

 The second statement uses the new keyword, which is

used to create objects.

 This tells the browser to create a new String object

containing the text This is a test and assigns it to the

variable test.

Assigning a Value

 You can also assign a value after the string has already been
created.

 For example, the following statement replaces the contents
of the test variable with a new string:

test = “This is only a test.”;
 The concatenation operator (+) to combine the values of

two strings.
 The += operator to add text to a string.
 Example, this statement adds a period to the current

contents of the string sentence:
sentence += “.”;

Calculating the String’s Length

test.length refers to the length of the test string.

Example:

 test = “This is a test.”;

 document.write(test.length);

 The second statement displays the length of the string

 In this Example, 15 characters.

 The length property is a read-only property

Converting the String’s Case

 Two methods of the String object enable you to convert the
contents of a string to all uppercase or all lowercase:

 toUpperCase()—Converts all characters in the string to
uppercase

 toLowerCase()—Converts all characters in the string to
lowercase

Example:

 test = “This Is A Test ”;

 document.write(test.toLowerCase());

 The result would be : this is a test

 An array is a numbered group of data items that you

can treat as a single unit.

 For example, you might use an array called scores to

store several scores for a game. Arrays can contain

strings, numbers, objects, or other types of data.

 Each item in an array is called an element of the array.

Creating a Numeric Array

Example creates an array with four elements:

scores = new Array(4);

 To assign a value to the array, you use an index in
brackets . Indexes begin with 0, so the elements of the
array in this example would be numbered 0 to 3. These
statements assign values to the four elements of the array:

 scores[0] = 39;

 scores[1] = 40;

 scores[2] = 100;

 scores[3] = 49;

 creates the same scores array in a single line:

scores = new Array(39,40,100,49);

 alternative way to create the scores array:

scores = [39,40,100,49];

Understanding Array Length

 This tells you the number of elements in the array. If

you specified the length when creating the array, this

value becomes the length property’s value.

 Example,

scores = new Array(30);

document.write(scores.length);

 These statements would print the number 30:

 You can declare an array with out a specific length ,
and change the length later by assigning values to
elements or changing the length property.

 For example, these statements create a new array and
assign values to two of its elements:

test = new Array();

test[0]=21;

test[5]=22;

 In this example, because the largest index number assigned
so far is 5, the array has a length property of 6—remember,
elements are numbered starting at 0.

Creating a String Array

 You declare a string array in the same way as a

numeric array.

 JavaScript does not make a distinction between them:

names = new Array(30);

 You can then assign string values to the array

elements :

names[0] = “Henry J. Tillman”;

names[1] = “Sherlock Holmes”;

 As with numeric arrays, you can also specify a string
array’s contents when you create it.

names = new Array(“Henry J. Tillman”,
“Sherlock Holmes”);

names = [“Henry J. Tillman”, “Sherlock Holmes”];

 You can use string array elements any where you
would use a string .

 For example, the following statement prints the first
five characters of the first element of the names array,
resulting in Henry:

document.write(names[0].substring(0,5));

Splitting a String
 JavaScript includes a string method called split, which splits a string into

its component parts.

 To use this method, specify the string to split and a character to divide the

parts:

test = “John Q. Public”;

parts = test.split(“ “);

 In this example, the test string contains the name John Q. Public.

 The split method in the second statement splits the name string at each

space, resulting in three strings. These are stored in a string array called

parts.

 After the example statements execute, the elements of parts contain the

following:

 parts[0] = “John” . parts[1] = “Q.” . parts[2] = “Public”

 JavaScript also includes an array method, join, which

performs the opposite function. This statement

reassembles the parts array into a string:

fullname = parts.join(“ “);

 The value in the parentheses specifies a character to

separate the parts of the array. In this case, a space is

used, resulting in the final string John Q.

 Public. If you do not specify a character, commas are

used.

Sorting a String Array
 JavaScript also includes a sort method for arrays, which

returns an alphabetically sorted version of the array.
 For example, the following statements initialize an array of

four names and sort them:
names[0] = “Public, John Q.”;
names[1] = “Doe, Jane”;
names[2] = “Duck, Daisy”;
names[3] = “Mouse, Mickey”;
sortednames = names.sort();

 The last statement sorts the names array and stores the
result in a new array, sorted names.

 https://www.javatpoint.com/javascript-example

 https://codescracker.com/js/program/javascript-add-

subtract-multiply-divide.html

 https://www.tutorialspoint.com/javascript/javascript_tut

orial.pdf

 Text Book

“Sams Teach Yourself HTML, CSS and JavaScript All

in One” by Juile C. Meloni

https://www.javatpoint.com/javascript-example
https://codescracker.com/js/program/javascript-add-subtract-multiply-divide.html

