
LR Parser 

LR parsers are used to parse the large class of context free grammars used by computer 

programming language compiler and other associated tools. This technique is called LR(k) 

parsing. 

 LR parsers can usually recognize all programming language construct that can be 

specified by context-free grammars. 

 LR parsers detect errors fast. 

 Drawback: it is too much work to construct an LR parser by hand. 

 

It is called a Bottom-up parser because it attempts to reduce the top-level grammar 

productions by building up from the leaves. LR parsers are the most powerful parser of all 

deterministic parsers in practice. 

 

 

 

• L is left-to-right scanning of the input. 

• R is for constructing a right most derivation in reverse. 

k is the number of input symbols of lookahead that are used in making parsing decisions. 

LR parser consists of two parts, a driver routine and a parsing table. 

The driver routine is same for all LR parsers only the parsing table changes from one parser 

to another. 

The driver routine is simple to implement. 

There are many different parsing table used in LR parser. 

Some parsing table detect errors sooner than others. 

Three different techniques for producing LR parsing tables are 

• SLR(l) – Simple LR 

    Works on smallest class of grammar. 

     Few number of states, hence very small table. 



     Simple and fast construction. 

     Easy to implement 

• LR( 1) – LR parser 

    Also called as Canonical LR parser. 

    Generates large table and large number of states. 

    Slow construction. 

     Expensive to implement 

• LALR(l) – Look ahead LR parser 

     Works on intermediate size of grammar. 

    Number of states are same as in SLR(l). 

     Works on most programming language 

LR Parser 

LR parser consists of an input, an output, a stack, a driver program and a parsing table that 

has two functions 

1. Action 

2. Goto 

The driver program is same for all LR parsers. Only the parsing table changes from one 

parser to another. 

The parsing program reads character from an input buffer one at a time, where a shift 

reduces parser would shift a symbol; an LR parser shifts a state. Each state summarizes 

the information contained in the stack. 

The stack holds a sequence of states, so, s1, · ·· , Sm, where Sm is on the top. 

 

Action This function takes as arguments a state i and a terminal a (or $, the input end 

marker). The value of ACTION [i, a] can have one of the four forms: 

i) Shift j, where j is a state. 

https://ecomputernotes.com/fundamental/information-technology/what-do-you-mean-by-data-and-information


ii) Reduce by a grammar production A—> β. 

iii) Accept. 

iv) Error. 

Goto This function takes a state and grammar symbol as arguments and produces a state. 

If GOTO [Ii ,A] = Ij, the GOTO also maps a state i and non terminal A to state j. 

 

 

Canonical collection of LR(0) items 

A production with a dot at some position on the right-hand side of the production is called the 

LR (0) item. 

  

Example: The possible LR (0) items for a production A → BCD 

A → • BCD 

A → B • CD 

A → BC • D 

A → BCD 

And for the production A → ∈, LR (0) item 

  

At any point of the parsing process, LR (0) item indicates how much portion of a production 

we have seen. 

For example the send production A → B • CD 



 Indicates that we have just seen the input string derivable from B and we next expect to see 

the string derivable from CD 

  

A collection of sets of LR (0) items is called Canonical LR(0) collection which is used in the 

construction of SLR functions  

To construct the canonical LR(0) collection for a grammar we need to define augmented 

grammar and two functions CLOSURE and GOTO 

 

Augmented Grammar − It is a new Grammar G′ which contains a new production S′ → S 

with all other productions of given grammar G. 

 

Closure of item sets 

If I is a set of items for a grammar G, then CLOSURE(I) is the set of items constructed from 

I by the two rules. 

• Initially, add every item I to CLOSURE(I). 

• If A —> αB,β is in CLOSURE(I) and B —> ɣ is a production, then add the item B —> • ɣ 

to CLOSURE(i), if it is not already there. Apply this rule until no more items can be added 

to CLOSURE (!). 

 

Constructing SLR parsing table 

Steps to produce SLR Parsing Table 

 Generate Canonical set of LR (0) items 

 Compute FOLLOW as required by Rule (2b) of Parsing Table Algorithm. 

 Step1− Construct the Augmented Grammar and number the productions 

 (0) E′ → E 

 (1) E → E + T 

 (2) E → T 

 (3) T → T * F 

 (4) T → F 

 (5) F → (E) 

 (6) F → id 

 Step2− Apply closure to the set of items &amp; find goto 

 Square Boxes represent the new states or items, and Circle represents the repeating 

items. 



  

  



 So, all rules of I0have been completed by applying goto on I0. Now, in the same manner 

apply goto on I1, I2 and then goes on. 

  



  



  

  

  



  

LR Driver Program  

 The LR driver Program determines Sm, the state on top of the stack and ai , the Current Input 

symbol. 

 ❖ It then consults Action[ Sm, ai ] which can take one of four values: 

 ✓ Shift 

 ✓ Reduce 

 ✓ Accept 

 ✓ Error  

 If Action[ Sm, ai ] = Shift S  

✓ Where S is a State, then the Parser pushes ai and S on to the Stack. 

 ❖If Action[ Sm, ai ] = Reduce A → β,  

✓ Then ai and Sm are replaced by A  

✓ if S was the state appearing below ai in the Stack, then GOTO[S, A] is consulted and the 

state pushed onto the stack 

If Action[ Sm, ai ] = Accept,  

✓ Parsing is completed  



❖If Action[ Sm, ai ] = Error,  

✓ The Parser discovered an Error. 

GOTO Table  

❖ The GOTO table specifies which state to put on top of the stack after a reduce 

 ✓Rows are State Names;  

✓Columns are Non-Terminals 

The GOTO Table is indexed by a state of the parser and a Non Terminal (Grammar Symbol) 

ex : GOTO[S, A]  

❖ The GOTO Table simply indicates what the next state of the parser if it has recognized a 

certain Non Terminal 

To fill reduce state 

Check in states I0 to I11 whether . is at end. If .(dot) followed by non terminal find follow for 

the non terminal. 

To Find Follow for E,T and F 

Follow(E)={$,+,)} 

Follow(T)={$,+,),*} 

Follow(T)={$,+,),*} 

 

 

Table Construction 

Put $ at the end of the string, i.e., id * id + id $. 

Stack Input String Reason 

0 id ∗ id + id Action [0, id] = s5 ∴ Shift id and state 5 



Stack Input String Reason 

0 id 5 ∗ id + id $ Action [5,∗] = r6. ∴ Reduce by F → id. goto(0, F) = 

3 

0 F 3 ∗ id + id $ Action [3,∗] = r4, Reduce by T → F goto(0, T) = 2 

0 T 2 ∗ id + id $ Action [2,∗] = s7, shift ∗, 7 

0T2*7 id + id $ Action [7, id] = s5, shift id, 5 

0T2*7 id 5 +id $ Action [5, +] = r6, Reduce by F → id goto(7, F) = 10 

0T2*7 F 10 +id $ Action [10, +] = r3S, Reduce by T → T ∗ F, goto(0, 

T) = 2 

0 T 2 +id $ Action [2, +] = r2, Reduce by E → T goto(0, E) = 1 

0 E 1 +id $ Action [1, +] = s6, Shift +, 6 

0 E 1 + 6 id $ Action [6, id] = s5, Shift id, 5. 

0 E 1 + 6 id 5 $ Action [5, $] = s6, Reduce by F → id, goto(6, F) = 3 

0 E 1 + 6 F 3 $ Action [3, $] = r4, Reduce by T → F, goto(6, F) = 9 

0 E 1 + 6 T 9 $ Action [9, $] = r1, Reduce by E → E + T, goto(0, E) 

= 1 

0 E 1 $ Action [1, $] = accept 

 

Constructing CLR parsing table 

CLR parsing use the canonical collection of LR (1) items to build the CLR (1) parsing table. 

CLR (1) parsing table produces the more number of states as compare to the SLR (1) parsing. 

In the CLR (1), we place the reduce node only in the lookahead symbols. 

LR(1) Parsing configurations have the general form:  

                              A –> X1...Xi • Xi+1...Xj , a 

❖ The Look Ahead Component ‘a’ represents a possible look-ahead after the entire right-

hand side has been matched  

❖ The Є appears as look-ahead only for the augmenting production because there is no 

lookahead after the end-marker  

Steps for constructing CLR parsing table : 

1. Writing augmented grammar 

2. LR(1) collection of items to be found 



3. Defining 2 functions: goto[list of terminals] and action[list of non-terminals] in 

the CLR parsing table 

Example: 

Context Free Grammar: S → CC C → cC C → d 

Augmented Grammar: S’ → • S$  

                                         S → •CC 

                                         C → •cC  

                                          C → •d 

Constructing the LR(1) Closure Items  

S’ → • S$ 

 S → •CC 

 C → •cC  

C → •d 

 

 



Construction of Follow Function 

 S’ → S$ 

 S → C C 

 C → c C  

C → d  

Follow (S) = { $ } 

 Follow (C) = { $ ,c, d }  

 


	Closure of item sets

