

O.S. ABDUL QADIR

JAMAL MOHAMED COLLEGE,

TRICHY – 20.

PROGRAMMING IN JAVA

O. S. ABDUL QADIR 1

SEMESTER – III: CORE-V: JAVA PROGRAMMING

Subject Code: 20UCA3CC5 Max. Marks: 100
Hours: 4 Internal Marks: 25
Credits: 4 External Marks: 75

Objective To understand the basic concepts of Object Oriented Programming with Java
language

UNIT I 15 Hours
Introduction to Java Programming: Introduction – Features of Java – Java Developer Kit. Java
Language Fundamentals: The Building Blocks of Java – Data Types – Variable Declarations:
Declaring, Initializing and Variables – Variable Types in Java. Wrapper Classes – Operators
and Assignment – Control Structures – Arrays – #Strings#

UNIT II 15 Hours
Java as an OOP Language – Defining Classes – Defining Methods – Knowing This – Passing
Arguments to Methods – Overloading Methods – Constructor Methods – Inheritance–
Overriding Methods – Modifiers: The Four Ps of Protection – Finalizing Classes, Methods and
Variables – Abstract Classes and Methods – Packages – Interfaces

UNIT III 15 Hours
Exception Handling: Introduction – Basics of Exception Handling in Java – Exception
Hierarchy – Constructors and Methods in Throwable Class – Handling Exceptions in Java –
Throwing User Defined Exceptions. Multithreading – Overview of Threads – Creating Threads
– Thread Life-cycle – #Thread Priorities and Thread Scheduling#

UNIT IV 15 Hours
Files and I/O Streams: Java I/O – File Streams – FileInputStream and FileOutputStream – Filter
Streams – RandomAccessFile – Serialization. Applets: Introduction – Java Applications
Versus Java Applets – Applet Life Cycle – Working with applets – The HTML APPLET Tag

UNIT V 15 Hours
The Abstract Window Toolkit: Basic Classes in AWT – Drawing with Graphics class - Class
Hierarchy in AWT – Event Handling – AWT Controls – Layout Managers

Text Book
P. Radha Krishna, Object Oriented Programming through JAVA, Universities Press, 2007
Unit I: Chapter 1 & 2 Unit II: Chapter 3 Unit III: Chapter 5 & 6
Unit IV: Chapter 7 & 8 Unit V: Chapter 10

Reference Book:
Herbert Schildt, The Complete Reference Java, Fifth Edition, Tata McGRAW-Hill, 2008

Web Reference:
https://www.programiz.com/java-programming

O. S. ABDUL QADIR 2

Contents

UNIT I
Features of Java .. 4
Java Development Kit ... 4
The Building Blocks of Java ... 8
Data Types .. 10
Variables in Java ... 12
Wrapper Classes .. 12
Operators and Assignment .. 14
Control Structures ... 18
Arrays ... 24

Strings .. 26

UNIT II
Java as an OOP Language ... 29
Defining Classes ... 29
Defining Methods ... 30
Variable Types in Java .. 32
Knowing This ... 33
Passing Arguments to Methods ... 34
Method Overloading ... 36
Constructor Methods ... 37
Inheritance .. 40
Method Overriding .. 43
Modifiers .. 45

Finalizing Classes, Methods and Variables .. 49
Abstract Classes and Methods ... 53
Packages ... 55
Interfaces .. 58

UNIT III

Exception Handling .. 63
Basics of Exception Handling in Java .. 63
Exception Hierarchy ... 64
Constructors and Methods in Throwable Class .. 65
Handling Exceptions in Java ... 66
Throwing User Defined Exceptions ... 72
Multithreading .. 76
Creating Threads ... 77
Thread Life-cycle .. 80
Thread Priorities and Thread Scheduling ... 81

O. S. ABDUL QADIR 3

UNIT IV
Files and I/O Streams: Java I/O ... 82
File Streams – FileInputStream and FileOutputStream .. 86
Filter Streams .. 87
RandomAccessFile ... 88
Serialization .. 90
Applets ... 92
Java Applications versus Java Applets .. 92
Applet Life Cycle .. 93
Running an Applet using HTML Tag .. 97

UNIT V
The Abstract Window Toolkit ... 100
AWT Hierarchy .. 100
AWT Controls .. 101
Drawing with Graphics class ... 105
Event Handling ... 106
Layout Managers .. 108

O. S. ABDUL QADIR 4

UNIT I
Introduction to JAVA
 Java is a programming language and a platform. Java is a high level, robust, object-oriented

and secure programming language.
 Java was developed by Sun Microsystems (which is now the subsidiary of Oracle) in the

year 1995.
 James Gosling is known as the father of Java. Before Java, its name was Oak. Since Oak

was already a registered company, so James Gosling and his team changed the Oak name
to Java.

Platform: Any hardware or software environment in which a program runs, is known as a
platform. Since Java has a runtime environment (JRE) and API, it is called a platform.

Java Example
class Simple
{
 public static void main(String args[])
 {
 System.out.println("Hello Java");
 }
}

Editions of Java
Each edition of Java has different capabilities.
There are three editions of Java:
1. Java Standard Editions (JSE): It is used to create programs for a desktop computer.
2. Java Enterprise Edition (JEE): It is used to create large programs that run on the server

and manages heavy traffic and complex transactions.
3. Java Micro Edition (JME): It is used to develop applications for small devices such as

set-top boxes, phone, and appliances.

Features of Java
 The primary objective of Java programming language creation was to make it portable,

simple and secure programming language. Apart from this, there are also some excellent
features which play an important role in the popularity of this language.

 The features of Java are also known as java buzzwords.
 A list of most important features of Java language is given below.

1. Simple
2. Object-Oriented
3. Portable
4. Platform independent
5. Secured
6. Robust
7. Architecture neutral
8. Interpreted
9. High Performance
10. Multithreaded
11. Distributed
12. Dynamic

O. S. ABDUL QADIR 5

1. Simple
Java is very easy to learn, and its syntax is simple, clean and easy to understand.
According to Sun, Java language is a simple programming language because:
 Java syntax is based on C++ (so easier for programmers to learn it after C++).
 Java has removed many complicated and rarely-used features, for example, explicit

pointers, operator overloading, etc.
 There is no need to remove unreferenced objects because there is an Automatic

Garbage Collection in Java

2. Object-oriented
Java is an object-oriented programming language. Everything in Java is an object.
Object-oriented means we organize our software as a combination of different types of
objects that incorporates both data and behavior.
 Object-oriented programming (OOPs) is a methodology that simplifies software

development and maintenance by providing some rules.
 Basic concepts of OOPs are:

1. Object - An object is a real-world entity that can be identified distinctly. Data
fields with their current values represent the state of an object (also known as
its properties or attributes).

2. Class - A class is a template or blueprint or prototype that defines data members
and methods of an object. An object is the instance of the class.

3. Inheritance - The mechanism in which one class acquire all the features of
another class. It achieve by using “extends” keyword. It facilitates the
reusability of the code.

4. Polymorphism - The polymorphism is the ability to appear in many forms.
There are two types of polymorphism: run time polymorphism and compile-
time polymorphism.

5. Abstraction - A method of hiding irrelevant information from the user. Java
use abstract class and interface to achieve abstraction.

6. Encapsulation - The process of binding data and functions into a single unit. A
class is an example of encapsulation.

3. Platform Independent

 Java is platform independent because it is different from other languages
like C, C++, etc. which are compiled into platform specific machines while Java is
a write once, run anywhere language.

 A platform is the hardware or software environment in which a program runs.
 There are two types of platforms software-based and hardware-based.
 Java provides a software-based platform.

The Java platform differs from most other platforms in the sense that it is a
software-based platform that runs on the top of other hardware-based platforms.

It has two components:
1. Runtime Environment
2. API(Application Programming Interface)

Java code can be run on multiple platforms. Java code is compiled by the compiler
and converted into bytecode. This bytecode is a platform-independent code because
it can be run on multiple platforms, i.e., Write Once and Run Anywhere(WORA).

O. S. ABDUL QADIR 6

4. Secured

Java is best known for its security. With Java, we can develop virus-free systems.
Java is secured because:
 No explicit pointer
 Java Programs run inside a virtual machine sandbox
 Classloader: Classloader in Java is a part of the Java Runtime Environment (JRE)

which is used to load Java classes into the Java Virtual Machine (JVM)
dynamically. It adds security by separating the package for the classes of the local
file system from those that are imported from network sources.

 Bytecode Verifier: It checks the code fragments for illegal code that can violate
access right to objects.

 Security Manager: It determines what resources a class can access such as reading
and writing to the local disk.

Java language provides these securities by default. Some security can also be provided
by an application developer explicitly through SSL, JAAS, Cryptography, etc.

5. Robust
Robust simply means strong.
Java is robust because:
 It uses strong memory management.
 There is a lack of pointers that avoids security problems.
 There is automatic garbage collection in java which runs on the JVM to get rid of

objects which are not being used by a Java application anymore.
 There are exception handling and the type checking mechanism in Java. All these

points make Java robust.

6. Architecture-neutral
Java is architecture neutral because there are no implementation dependent features, for
example, the size of primitive types is fixed.
In C programming, int data type occupies 2 bytes of memory for 32-bit architecture and
4 bytes of memory for 64-bit architecture. However, it occupies 4 bytes of memory for
both 32 and 64-bit architectures in Java.

7. Portable
Java is portable because it facilitates you to carry the Java bytecode to any platform. It
doesn't require any implementation.

8. High-performance
Java is faster than other traditional interpreted programming languages because Java
bytecode is "close" to native code.
Java is an interpreted language that is why it is slower than compiled languages, e.g.,
C, C++, etc.

9. Distributed
Java is distributed because it facilitates users to create distributed applications in Java.

O. S. ABDUL QADIR 7

RMI and EJB are used for creating distributed applications. This feature of Java makes
us able to access files by calling the methods from any machine on the internet.

10. Multi-threaded
A thread is like a separate program, executing concurrently. We can write Java
programs that deal with many tasks at once by defining multiple threads.
The main advantage of multi-threading is that it doesn't occupy memory for each thread.
It shares a common memory area. Threads are important for multi-media, Web
applications, etc.

11. Dynamic
Java is a dynamic language. It supports dynamic loading of classes. It means classes
are loaded on demand.
It also supports functions from its native languages, i.e., C and C++.
Java supports dynamic compilation and automatic memory management (garbage
collection).

Java Development Kit (JDK)
 The Java Development Kit (JDK) is a software development environment which is used to

develop java applications and applets. It physically exists. It contains JRE + development
tools.

 JDK is an implementation of any one of the below given Java Platforms released by Oracle
corporation:

1. Standard Edition Java Platform
2. Enterprise Edition Java Platform
3. Micro Edition Java Platform

 The JDK contains a private Java Virtual Machine (JVM) and a few other resources such as
an interpreter/loader (Java), a compiler (javac), an archiver (jar), a documentation generator
(Javadoc) etc. to complete the development of a Java Application.

Components of JDK
Following is a list of primary components of JDK:
Sl.
No

Component
Name

Description

1 Appletviewer
This tool is used to run and debug Java applets without a web
browser.

2 Javac
It specifies the Java compiler, which converts source code into
Java bytecode.

3 Javadoc
The documentation generator, which automatically generates
documentation from source code comments

4 Javap the class file disassembler.
5 Javah the C header and stub generator, used to write native methods.
6 JConsole Java Monitoring and Management Console.

7 Jar
Specifies the archiver, which packages related class libraries
into a single JAR file. This tool also helps manage JAR files.

O. S. ABDUL QADIR 8

The Building blocks of a Java program
1. Lexical Tokens

a. Identifiers
b. Keywords

2. Literals
a. Integer Literals
b. Floating-Point Literals
c. Boolean Literals
d. Character Literals
e. String Literals

3. White Spaces
4. Comments

1. Lexical tokens
 A lexical token may consist of one or more characters, and every single character is in

exactly one token.
 The tokens can be keywords, comments, numbers, white space, or strings. All lines should

be terminated by a semi-colon (;).
a. Identifiers
 Identifier a name chosen by the programmer to identify something defined inside a

program
 There are some rules in Java that you must follow to form the identifier name
 An identifier consists of a number of characters

 There is no limit on the number of characters in the identifier (but do not try
using identifiers that are too long because you will have to type it yourself...)

 The first character of an identifier must be one of the following:

 A letter (a, b, ..., z, A, B, ..., Z), or
 The underscore character

 The subsequent characters of an identifier must be one of the following:

 A letter (a, b, ..., z, A, B, ..., Z), or
 The underscore character, or
 A digit (0, 1, ..., 9)

 Identifiers are case-sensitive!
b. Keywords
 Keywords have special meaning in a programming language.
 It is also known as Reserved Words
 You cannot use a keyword as identifier (keywords are reserved for a specific purpose!)

abstract continue for new switch case try

extends default goto* package synchronized enum**** catch

boolean do if private this instanceof char

Break double implements protected throw return final

Byte else import public throws transient interface

Class finally long strictfp** volatile int static

const* float native super while short void

O. S. ABDUL QADIR 9

2. Literals
 A literal is a source code representation of a fixed value.
 They are represented directly in the code without any computation.
 Literals can be assigned to any primitive type variable.

a. Integral Literals in Java
We can specify the integer literals in 4 different ways –
a. Decimal (Base 10)

Digits from 0-9 are allowed in this form. int x = 101;
b. Octal (Base 8)

Digits from 0 – 7 are allowed. It should always have a prefix 0.
int x = 0146;

c. Hexa-Decimal (Base 16)
Digits 0-9 are allowed and also characters from a-f are allowed in this form.
Furthermore, both uppercase and lowercase characters can be used.

int x = 0X123Face;

b. Boolean Literals in Java
 They allow only two values i.e. true and false.

 boolean b = true;

c. Floating-Point Literals in Java
 Here, datatypes can only be specified in decimal forms and not in octal/hexadecimal.
 Every floating type is a double type and this the reason why we cannot assign it directly
to float variable, to escape this we use f or F as suffix, and for double we use d or D.

d. Char Literals in Java

There are the four types of char literals in Java
1. Single quote - Java Literal can be specified to a char data type as a single character

within a single quote.

 char ch = 'a';
2. Char literal

- A char literal in Java can specify as integral literal which also represents the
Unicode value of a character.
- Furthermore, an integer can specify in decimal, octal and even hexadecimal
type, but the range is 0-65535.

 char ch = 062;
3. Escape sequences

- A character preceded by a backslash (\) is an escape sequence and has a special
meaning to the compiler.
- The following table shows the Java escape sequences.

Escape Sequence Description

\t Inserts a tab in the text at this point.

\b Inserts a backspace in the text at this point.

\n Inserts a newline in the text at this point.

\r Inserts a carriage return in the text at this point.

\f Inserts a form feed in the text at this point.

O. S. ABDUL QADIR 10

\' Inserts a single quote character in the text at this point.

\" Inserts a double quote character in the text at this point.

\\ Inserts a backslash character in the text at this point.

4. Unicode representation
- Char literals can specify in Unicode representation ‘\uxxxx’. Here XXXX
represents 4 hexadecimal numbers.
 char ch = '\u0061';// Here /u0061 represent a.

5. String literals in Java
Java String literals are any sequence of characters with a double quote.

String s = "Hello";
They may not contain unescaped newline or linefeed characters.

3. White Spaces
 White space can contain the characters for tabs, blanks, newlines, and form feeds.
 These characters are ignored except when they serve to separate other tokens.
 However, blanks and tabs are significant in strings.

4. Comments

 A text inside a Java program that is ignored by the Java compiler.
 Comments are used to annotate the program to help humans understand the operation

of the Java program.
Single line comment syntax:

 // ... single line comment
The text on the line following the symbol // will be ignored

Multiple lines comment syntax:
 /* comment line 1
 comment line 2
 ...
*/
All text between the comment brackets /* */ will be ignored

Data Types in Java
 Data types specify the different sizes and values that can be stored in the variable.
 There are two types of data types in Java:

1. Primitive data types: The primitive data types include boolean, char, byte, short,
int, long, float and double.
2. Non-primitive data types: The non-primitive data types include Classes, Interfaces,
and Arrays.

O. S. ABDUL QADIR 11

 Java Primitive Data Types
 In Java language, primitive data types are the building blocks of data manipulation.
 These are the most basic data types available in Java language.
 Java is a statically-typed programming language. It means, all variables must be

declared before its use. That is why we need to declare variable's type and name.
 There are 8 types of primitive data types:

1. boolean data type
 The Boolean data type is used to store only two possible values: true and false.

This data type is used for simple flags that track true/false conditions.
 The Boolean data type specifies one bit of information, but its "size" can't be

defined precisely.

2. byte data type
 It is an 8-bit signed two's complement integer. Its value-range lies between -128

to 127 (inclusive). Its minimum value is -128 and maximum value is 127.
 Its default value is 0. It saves space because a byte is 4 times smaller than an

integer.

3. char data type
 It is a single 16-bit Unicode character. Its value-range lies between '\u0000' (or

0) to '\uffff' (or 65,535 inclusive).The char data type is used to store characters.

4. short data type
 It is a 16-bit signed two's complement integer. Its value-range lies between -

32,768 to 32,767 (inclusive). Its minimum value is -32,768 and maximum value
is 32,767.

 Its default value is 0. A short data type is 2 times smaller than an integer.

5. int data type
 It is a 32-bit signed two's complement integer.
 Its value-range lies between - 2,147,483,648 to 2,147,483,647. Its minimum

value is - 2,147,483,648 and maximum value is 2,147,483,647. Its default value
is 0.

6. long data type
 It is a 64-bit two's complement integer.
 Its value-range lies between minimum value is 9,223,372,036,854,775,808 and

maximum value is 9,223,372,036,854,775,807. Its default value is 0.
 The long data type is used when you need a range of values more than those

provided by int.

7. float data type
 It is a single-precision 32-bit IEEE 754 floating point. Its value range is

unlimited.
 Its default value is 0.0F.

8. double data type

 It is a double-precision 64-bit IEEE 754 floating point. Its value range is
unlimited. Its default value is 0.0d.

O. S. ABDUL QADIR 12

Data Type Default Value Default size Example
Boolean False 1 bit Boolean one = false
char '\u0000' 2 byte char letterA = 'A'
byte 0 1 byte byte a = 10, byte b = -20

short 0 2 byte short s = 10000, short r = -5000
int 0 4 byte int a = 100000, int b = -200000
long 0L 8 byte long a = 100000L, long b = -200000L

float 0.0f 4 byte float f1 = 234.5f
double 0.0d 8 byte double d1 = 12.3

Variables in Java
Variable
Variable is name of reserved area allocated in memory. In other words, it is a name of
memory location. It is a combination of "vary + able" that means its value can be
changed.
Types of Variables:
There are three types of variables:

1. Local Variables
2. Instance Variables
3. Static or Class variables

1. Local Variables
A variable declared inside the body of the method is called local variable. You can use
this variable only within that method and the other methods in the class aren't even
aware that the variable exists.

2. Instance Variable
A variable declared inside the class but outside the body of the method, is called
instance variable. Instance variable doesn't get memory at compile time. It gets memory
at runtime when an object or instance is created.

3. Static or Class variables
A variable which is declared as static is called static variable. It cannot be local. You
can create a single copy of static variable and share among all the instances of the class.
Memory allocation for static variable happens only once when the class is loaded in the
memory.

Wrapper classes in Java

 The wrapper class in Java provides the mechanism to convert primitive into object and
object into primitive.

 The automatic conversion of primitive into an object is known as autoboxing and vice-
versa unboxing.

Use of Wrapper classes in Java
 Java is an object-oriented programming language, so we need to deal with objects many

times like in Collections, Serialization, Synchronization, etc.

O. S. ABDUL QADIR 13

 Change the value in Method: Java supports only call by value. So, if we pass a
primitive value, it will not change the original value. But, if we convert the primitive
value in an object, it will change the original value.

 Serialization: We need to convert the objects into streams to perform the serialization.
If we have a primitive value, we can convert it in objects through the wrapper classes.

 Synchronization: Java synchronization works with objects in Multithreading.
 java.util package: The java.util package provides the utility classes to deal with

objects.
 Collection Framework: Java collection framework works with objects only. All

classes of the collection framework (ArrayList, LinkedList, Vector, HashSet,
LinkedHashSet, TreeSet, PriorityQueue, ArrayDeque, etc.) deal with objects only.

 The eight classes of the java.lang package are known as wrapper classes in Java.
 The list of eight wrapper classes are given below:

Primitive Type Wrapper class

boolean Boolean

char Character

byte Byte

short Short

int Integer

long Long

float Float

double Double

Autoboxing
 The automatic conversion of primitive data type into its corresponding wrapper class is

known as autoboxing, for example, byte to Byte, char to Character, int to Integer, long
to Long, float to Float, boolean to Boolean, double to Double, and short to Short.

 Since Java 5, we do not need to use the valueOf() method of wrapper classes to convert
the primitive into objects.
Wrapper class Example: Primitive to Wrapper
//Java program to convert primitive into objects. Autoboxing example of int to Integer
public class WrapperExample1
{

public static void main(String args[])
{

int a=20;
Integer i=Integer.valueOf(a);//converting int into Integer explicitly
Integer j=a;// now compiler will write Integer.valueOf(a) internally

 System.out.println(a+" "+i+" "+j);
}

}

 Unboxing

 The automatic conversion of wrapper type into its corresponding primitive type is
known as unboxing.

O. S. ABDUL QADIR 14

 It is the reverse process of autoboxing. Since Java 5, we do not need to use the
intValue() method of wrapper classes to convert the wrapper type into primitives.
Wrapper class Example: Wrapper to Primitive
//Java program to convert object into primitives. Unboxing example of Integer to int
public class WrapperExample2
{

public static void main(String args[])
{

Integer a=new Integer(3);
int i=a.intValue();//converting Integer to int explicitly
int j=a;// now compiler will write a.intValue() internally
System.out.println(a+" "+i+" "+j);

}
}

Operators in Java
 Operator in Java is a symbol which is used to perform operations. For ex: +, -, *, / etc.
 There are many types of operators in Java which are given below:

 Unary Operator,
 Arithmetic Operator,
 Shift Operator,
 Relational Operator,
 Bitwise Operator,
 Logical Operator,
 Ternary Operator and
 Assignment Operator.

Java Unary Operator
The Java unary operators require only one operand. Unary operators are used to perform
various operations i.e.:

 incrementing/decrementing a value by one
 negating an expression
 inverting the value of a boolean

Example: ++ and --
class OperatorExample
{

public static void main(String args[])
{

int x=10, a=10;
System.out.println(x++);//10 (11)
System.out.println(++x);//12
System.out.println(x--);//12 (11)
System.out.println(--x);//10
System.out.println(a++ + ++a);//10+12=22

 System.out.println(~a);//-11 (minus of total positive value which
starts from 0)
}

}

O. S. ABDUL QADIR 15

Java Arithmetic Operators
Java arithmatic operators are used to perform addition, subtraction, multiplication, and
division. They act as basic mathematical operations.
Example

class OperatorExample
{

public static void main(String args[])
{

int a=10;
int b=5;
System.out.println(a+b);//15
System.out.println(a-b);//5
System.out.println(a*b);//50
System.out.println(a/b);//2
System.out.println(a%b);//0

}
}

 Java Left Shift Operator
The Java left shift operator << is used to shift all of the bits in a value to the left side of
a specified number of times.
Example

class OperatorExample
{

public static void main(String args[])
{

System.out.println(10<<2);//10*2^2=10*4=40
System.out.println(10<<3);//10*2^3=10*8=80
System.out.println(20<<2);//20*2^2=20*4=80
System.out.println(15<<4);//15*2^4=15*16=240

}
}

Java Right Shift Operator
The Java right shift operator >> is used to move left operands value to right by the
number of bits specified by the right operand.
Example

class OperatorExample
{

public static void main(String args[])
{

System.out.println(10>>2);//10/2^2=10/4=2
System.out.println(20>>2);//20/2^2=20/4=5
System.out.println(20>>3);//20/2^3=20/8=2

}
}

O. S. ABDUL QADIR 16

Java Shift Operator Example: >> vs >>>
class OperatorExample
{

public static void main(String args[])
{
 //For positive number, >> and >>> works same
 System.out.println(20>>2);
 System.out.println(20>>>2);
 //For negative number, >>> changes parity bit (MSB) to 0
 System.out.println(-20>>2);
 System.out.println(-20>>>2);
}

}

Java AND Operator Example: Logical && and Bitwise &
 The logical && operator doesn't check second condition if first condition is false.

It checks second condition only if first one is true.
 The bitwise & operator always checks both conditions whether first condition is

true or false.
Example

class OperatorExample
{

public static void main(String args[])
{

int a=10;
int b=5;
int c=20;
System.out.println(a<b&&a<c);//false && true = false
System.out.println(a<b&a<c);//false & true = false

}
}

Java OR Operator Example: Logical || and Bitwise |
 The logical || operator doesn't check second condition if first condition is true. It

checks second condition only if first one is false.
 The bitwise | operator always checks both conditions whether first condition is true

or false.
Example
class OperatorExample
{

public static void main(String args[])
{

int a=10;
int b=5;
int c=20;
System.out.println(a>b||a<c);//true || true = true
System.out.println(a>b|a<c);//true | true = true
//|| vs |

O. S. ABDUL QADIR 17

System.out.println(a>b||a++<c);//true || true = true
System.out.println(a);//10 because second condition is not checked
System.out.println(a>b|a++<c);//true | true = true
System.out.println(a);//11 because second condition is checked

}
}

Java Ternary Operator
 It is used as one liner replacement for if-then-else statement and used a lot in Java

programming. This is the only conditional operator which takes three operands.
Example
class OperatorExample
{

public static void main(String args[])
{

int a=2;
int b=5;
int min=(a<b)?a:b;
System.out.println(min);

}
}

Java Assignment Operator
 Java assignment operator is one of the most common operator.
 It is used to assign the value on its right to the operand on its left.
Example
class OperatorExample
{

public static void main(String args[])
{

int a=10;
int b=20;
a+=4;//a=a+4 (a=10+4)
b-=4;//b=b-4 (b=20-4)
System.out.println(a);
System.out.println(b);

}
}

Java Operator Precedence

Operator
Type

Category Precedence

Unary
prefix

postfix expr++ expr--
++expr --expr +expr -expr ~ !

Arithmetic

multiplicative * / %
additive + -

Shift shift << >> >>>
Relational

comparison < > <= >= instanceof
equality == !=

O. S. ABDUL QADIR 18

Bitwise

bitwise AND &
bitwise exclusive OR ^
bitwise inclusive OR |

Logical

logical AND &&
logical OR ||

Ternary ternary ? :

Assignment assignment
= += -= *= /= %= &= ^= |=
<<= >>= >>>=

Control Structures
Blocks

 A block statement is a sequence of zero or more statements enclosed in braces.
 A block statement is generally used to group together several statements, so they can

be used in a situation that requires you to use a single statement.
 In some situations, you can use only one statement. If you want to use more than one

statement in those situations, you can create a block statement by placing all your
statements inside braces, which would be treated as a single statement.
An example of block statement is given below.

{ //block start
 int var = 20;
 var++;
} //block end

Scope of variables
 Please note that all the variables declared in a block statement can only be used

within that block. In other words, you can say that all variables declared in a block
have local scope.

{ //block start
 int var = 20;
 var++;
} //block end
// A compile-time error. var has been declared inside a block and
// so it cannot be used outside that block
System.out.println(var);
 Similarily, you can also nest a block statement inside another block

statement. All the variables declared in the enclosing blocks (outer blocks)
are available to the enclosed blocks (inner blocks). However, the variables
declared in the enclosed inner blocks are not available in enclosing outer
blocks.

During object creation
 Another thing which may interest you that block statements need not to be only

inside methods.
 You can write them as other class members such as class variables and methods.

public class MyDemoAction
{
 private Interger variable = 10;
 public MyDemoAction(){
 System.out.println("MyDemoAction Constructor");
 }

O. S. ABDUL QADIR 19

 {
 //Non-static block statement
 }
 static {
 //Static block statement
 }
 private void someMethod() {
 System.out.println("HowToDoInJava.com");
 }
}

 Please note that when block statements are declared in such way, non-static blocks
will be executed everytime an instance of class is created.

 Static block will be execute only once when class is loaded by JVM clas loaders
(Much like other static variables present at class level).

Loops in Java
In programming languages, loops are used to execute a set of instructions/functions
repeatedly when some conditions become true. There are three types of loops in Java.

1. while loop
2. do…while loop
3. for loop

1. while loop

The Java while loop is used to iterate a part of the program several times. If the
number of iteration is not fixed, it is recommended to use while loop.
Syntax:

while(condition)
{
//code to be executed
}

Example
public class WhileExample
{

public static void main(String[] args)
{
 int i=1;
 while(i<=10)
{
 System.out.println(i);
 i++;
}

 }
}

2. do…..while loop
 The Java do-while loop is used to iterate a part of the program several times. If

the number of iteration is not fixed and you must have to execute the loop at
least once, it is recommended to use do-while loop.

O. S. ABDUL QADIR 20

 The Java do-while loop is executed at least once because condition is checked
after loop body.

Syntax:
 do
{

//code to be executed
}while(condition);

Example:
public class DoWhileExample
{

public static void main(String[] args)
{
 int i=1;
 do
 {
 System.out.println(i);
 i++;
 }while(i<=10);
}

}

3. For loop
 The Java for loop is used to iterate a part of the program several times. If the

number of iteration is fixed, it is recommended to use for loop.
It consists of four parts:
1. Initialization: It is the initial condition which is executed once when the loop

starts.
Here, we can initialize the variable, or we can use an already initialized
variable. It is an optional condition.

2. Condition: It is the second condition which is executed each time to test the
condition of the loop.

It continues execution until the condition is false.
It must return boolean value either true or false.
It is an optional condition.

3. Statement: The statement of the loop is executed each time until the second
condition is false.

4. Increment/Decrement: It increments or decrements the variable value. It is an
optional condition.
Syntax:
for(initialization;condition;incr/decr)
{
//statement or code to be executed
}
Example:
//Java Program to demonstrate the example of for loop which prints table of 1

public class ForExample
{

public static void main(String[] args)
{

O. S. ABDUL QADIR 21

 //Code of Java for loop
 for(int i=1;i<=10;i++)
 {
 System.out.println(i);
 }

}
}

Branching Statement
 Branching statements are the statements used to jump the flow of execution from one part

of a program to another.
 The branching statements are mostly used inside the control statements.

Java if Statement
 The Java if statement tests the condition. It executes the if block if condition is true.

Syntax:
if(condition)
{
//code to be executed
}

Example:
//Java Program to demonstate the use of if statement.
public class IfExample
{

public static void main(String[] args)
{
 int age=20;

if(age>18) //checking the age
 {
 System.out.print("Age is greater than 18");
 }
}

}

Java if-else Statement
 The Java if-else statement also tests the condition.
 It executes the “if” block if condition is true otherwise else block is executed.

Syntax:
if(condition)
{

//code if condition is true
}
else
{

//code if condition is false
}

Example: ODD or EVEN

//A Java Program to demonstrate the use of if-else statement.

O. S. ABDUL QADIR 22

public class IfElseExample
{

public static void main(String[] args)
{
 //defining a variable
 int number=13;
 //Check if the number is divisible by 2 or not
 if(number%2==0)
 {
 System.out.println("even number");
 }
else
{
 System.out.println("odd number");
}

 }
}

Break and Continue Statement
 In Java, continue and break statements are two essential branching statements used with

the control statements.
 The break statement breaks or terminates the loop and transfers the control outside the

loop.
- The unlabeled break statement is used to terminate the loop that is inside the

loop.
- It is also used to stop the working of the switch statement.
- We use the unlabeled break statement to terminate all the loops available in

Java.
Syntax:

for (int; testExpression; update)
{
 //Code
 if(condition to break)
 {
 break;
 }
}

 The continue statement skips the current execution and pass the control to the start of
the loop.

- It continues the current flow of the program and stop executing the remaining
code at the specified condition.
Syntax
control-flow-statement;
continue;

Example: ContinueExample.java
public class ContinueExample
{

public static void main(String[] args)

O. S. ABDUL QADIR 23

{
int x = 1;
int y = 10;
//Using do while loop for using continue statement
do
{

 if(x == y/2)
{

 x++;
 continue;// skips the remaining statement

 }
 System.out.println(x);

x++;
}while(x <= y);

 }
}

Switch statement

 The Java switch statement executes one statement from multiple conditions. It is like
if-else-if ladder statement.

 In other words, the switch statement tests the equality of a variable against multiple
values.

 The case value must be of switch expression type only. The case value must be literal
or constant. It doesn't allow variables.

 The case value can have a default label which is optional.
 The case values must be unique. In case of duplicate value, it renders compile-time

error.
Syntax

switch(expression){
case value1:
 //code to be executed;
 break; //optional
case value2:
 //code to be executed;
 break; //optional
......
default:
 code to be executed if all cases are not matched;
}

Example:
public class SwitchExample
{

public static void main(String[] args)
{

//Declaring a variable for switch expression
int number=20;

 //Switch expression
switch(number)
{

O. S. ABDUL QADIR 24

 //Case statements
 case 10: System.out.println("10");

 break;
case 20: System.out.println("20");

 break;
 case 30: System.out.println("30");
 break;
 //Default case statement
 default:System.out.println("Not in 10, 20 or 30");
}

}
}

Arrays
 An array is a collection of similar type of elements which has contiguous memory location.
 The elements of an array are stored in a contiguous memory location.
 It is a data structure where we store similar elements.
 Moreover, Java provides the feature of anonymous arrays which is not available in C/C++.

Advantages

 Code Optimization: It makes the code optimized, we can retrieve or sort the data
efficiently.

 Random access: We can get any data located at an index position.
Disadvantages
 Size Limit: We can store only the fixed size of elements in the array. It doesn't

grow its size at runtime. To solve this problem, collection framework is used in Java
which grows automatically.

Types of Array in java

There are two types of array.
1. Single Dimensional Array
2. Multidimensional Array

1. Single Dimensional Array in Java

Syntax
dataType[] arr; (or)
dataType []arr; (or)
dataType arr[];

Instantiation of an Array in Java
arrayRefVar=new datatype[size];

Example: Java Array

O. S. ABDUL QADIR 25

//Java Program to illustrate how to declare, instantiate, initialize and traverse the
Java array.

class Testarray
{

public static void main(String args[])
{

int a[]=new int[5]; //declaration and instantiation
a[0]=10; a[1]=20;
a[2]=70; a[3]=40; //initialization
a[4]=50;
//traversing array
for(int i=0;i<a.length;i++)//length is the property of array

System.out.println(a[i]);
}

 }

Declaration, Instantiation and Initialization of Java Array

We can declare, instantiate and initialize the java array together by:
int a[]={33,3,4,5};//declaration, instantiation and initialization
Let's see the simple example to print this array.

//Java Program to illustrate the use of declaration, instantiation
//and initialization of Java array in a single line
class Testarray1
{

public static void main(String args[])
{

int a[]={33,3,4,5};
//declaration, instantiation and initialization
//printing array

for(int i=0;i<a.length;i++)
//length is the property of array

System.out.println(a[i]);
}

}

2. Multidimensional Array in Java
In such case, data is stored in row and column based index (also known as matrix
form).
Syntax to Declare Multidimensional Array in Java

dataType[][] arrayRefVar; (or)
dataType [][]arrayRefVar; (or)
dataType arrayRefVar[][]; (or)
dataType []arrayRefVar[];

- Example to instantiate Multidimensional Array in Java
int[][] arr=new int[3][3];//3 row and 3 column

- Example to initialize Multidimensional Array in Java
arr[0][0]=1;
arr[0][1]=2;
arr[1][0]=3;

O. S. ABDUL QADIR 26

arr[1][1]=4;
arr[2][0]=5;
arr[2][1]=6;

Example
//Java Program to illustrate the use of multidimensional array

class Testarray3
{

public static void main(String args[])
{

//declaring and initializing 2D array
int arr[][]={{1,2,3},{2,4,5},{4,4,5}};
//printing 2D array
for(int i=0;i<3;i++)
{

 for(int j=0;j<3;j++)
{

System.out.print(arr[i][j]+" ");
 }
 System.out.println();

}
}

}

Strings
 In Java, string is basically an object that represents sequence of char values. \
 An array of characters works same as Java string.

For example:
char[] ch={'j','a','v','a','s','t','r','i','n','g'};
String s=new String(ch);

is same as:
String s="javastring";

 Java String class provides a lot of methods to perform operations on strings such as
compare(), concat(), equals(), split(), length(), replace(), compareTo(), intern(), substring()
etc.

 The java.lang.String class implements Serializable, Comparable and CharSequence
interfaces.

Java String class methods
 The java.lang.String class provides many useful methods to perform operations on

sequence of char values.
No. Method Description
1 char charAt(int index) returns char value for the particular index
2 int length() returns string length

3
static String format(String format,
Object... args)

returns a formatted string.

4
static String format(Locale l, String
format, Object... args)

returns formatted string with given locale.

5 String substring(int beginIndex) returns substring for given begin index.

O. S. ABDUL QADIR 27

6
String substring(int beginIndex, int
endIndex)

returns substring for given begin index and
end index.

7 boolean contains(CharSequence s)
returns true or false after matching the
sequence of char value.

8 boolean equals(Object another)
checks the equality of string with the given
object.

9 boolean isEmpty() checks if string is empty.

10 String concat(String str) concatenates the specified string.
11 int indexOf(int ch) returns the specified char value index.

12 int indexOf(int ch, int fromIndex)
returns the specified char value index
starting with given index.

13 int indexOf(String substring) returns the specified substring index.

14
int indexOf(String substring, int
fromIndex)

returns the specified substring index
starting with given index.

15 String toLowerCase() returns a string in lowercase.

16 String toLowerCase(Locale l)
returns a string in lowercase using
specified locale.

17 String toUpperCase() returns a string in uppercase.

18 String toUpperCase(Locale l)
returns a string in uppercase using
specified locale.

19 String trim()
removes beginning and ending spaces of
this string.

20 static String valueOf(int value)
converts given type into string. It is an
overloaded method.

Java String valueOf()
 The java string valueOf() method converts different types of values into string.
 By the help of string valueOf() method, you can convert int to string, long to string,

boolean to string, character to string, float to string, double to string, object to string
and char array to string.
Internal implementation

public static String valueOf(Object obj)
{
 return (obj == null) ? "null" : obj.toString();
}

Signature
 The signature or syntax of string valueOf() method is given below:

public static String valueOf(boolean b)
public static String valueOf(char c)
public static String valueOf(char[] c)
public static String valueOf(int i)
public static String valueOf(long l)
public static String valueOf(float f)
public static String valueOf(double d)
public static String valueOf(Object o)

Returns
string representation of given value

O. S. ABDUL QADIR 28

 Example
public class StringValueOfExample
{

public static void main(String args[])
{

int value=30;
String s1=String.valueOf(value);
System.out.println(s1+10);//concatenating string with 10

}
}

Java String equals()
 The java string equals() method compares the two given strings based on the content of

the string. If any character is not matched, it returns false. If all characters are matched,
it returns true.

 The String equals() method overrides the equals() method of Object class.
Example
public class EqualsExample
{

public static void main(String args[])
{

String s1="javatpoint";
String s2="javatpoint";
String s3="JAVATPOINT";
String s4="python";
System.out.println(s1.equals(s2));//true because content & case is same
System.out.println(s1.equals(s3));//false because case is not same
System.out.println(s1.equals(s4));//false because content is not same

}
}

O. S. ABDUL QADIR 29

UNIT II
Java as an OOP Language
 Java program consists of a set of objects that interact and communicate with each other.
 Classes are the blueprints or construction plans for these objects and specify the properties

/ state and behaviour of objects.

DEFINING CLASSES
Everything in Java is associated with classes and objects, along with its attributes and
methods. For example: in real life, a car is an object. The car has attributes, such as weight
and color, and methods, such as drive and brake.
A Class is like an object constructor, or a "blueprint" for creating objects.

Objects and Classes
 An entity that has state and behavior is known as an object e.g., chair, bike, marker, pen,

table, car, etc.
 The characteristics of an object are:

 State: represents the data (value) of an object.
 Behavior: represents the behavior (functionality) of an object such as deposit,

withdraw, etc.
Example:

Pen is an object. Its state include
name is Reynolds;
color is white.
Its behavior is writing.

An object is an instance of a class. A class is a template or blueprint from which objects are
created. So, an object is the instance (result) of a class.

Object Definitions:

 An object is a real-world entity.
 An object is a runtime entity.
 The object is an entity which has state and behavior.
 The object is an instance of a class.

How to create an object?
Classname Object name = new classname();
Rectangle r1=new Rectangle() // Rectangle class name and r1 object name

Multiple objects can be created as

Rectangle r1=new Rectangle(), r2=new Rectangle(); //creating two objects

What is a class in Java?
A class is a group of objects which have common properties. It is a template or blueprint
from which objects are created.
A class in Java can contain:

 Fields
 Methods
 Constructors
 Blocks
 Nested class and interface

O. S. ABDUL QADIR 30

Syntax to declare a class:
class <class_name>
{

field;
 method;
}

Method in Java

In Java, a method is like a function which is used to expose the behavior of an object.
Advantage of Method

 Code Reusability
 Code Optimization

new keyword in Java
The new keyword is used to allocate memory at runtime. All objects get memory in Heap
memory area.

Object and Class
Example1:
In this example, we have created a Student class which has two data members, id and name.
We are creating the object of the Student class by new keyword and printing the object's value.

class Student
{

//defining fields
 int id; //field or data member or instance variable
 String name;
 //creating main method inside the Student class
 public static void main(String args[])

{
 //Creating an object or instance

 Student s1=new Student(); //creating an object of Student
 //Printing values of the object

accessing member through reference variable
 System.out.println(s1.id);
 System.out.println(s1.name);
 }
}

Object and Class
Example2:

class Student
{
 int id;
 String name;
}
class TestStudent1
{

public static void main(String args[])
{

O. S. ABDUL QADIR 31

 Student s1=new Student();
 System.out.println(s1.id);
 System.out.println(s1.name);
 }
}

Object and Class
Example3:

// Initializing an object means storing data into the object.
// Initializing an object through a reference variable
class Student
{
 int id;
 String name;
}
class TestStudent2
{

public static void main(String args[])
{

 Student s1=new Student();
 s1.id=101;
 s1.name="Sonoo";
 System.out.println(s1.id+" "+s1.name);

//printing members with a white space
 }
}

Object and Class
Example4:

// creating multiple objects
class Student
{
 int id;
 String name;
}
class TestStudent3
{
 public static void main(String args[])

{
 //Creating objects

 Student s1=new Student();
 Student s2=new Student();
 //Initializing objects
 s1.id=101;
 s1.name="Sonoo";
 s2.id=102;
 s2.name="Amit";
 //Printing data
 System.out.println(s1.id+" "+s1.name);

O. S. ABDUL QADIR 32

 System.out.println(s2.id+" "+s2.name);
 }
}

Object and Class
Example5:

// Passing Arguments to Methods
class Student
{
 int rollno;
 String name;
 void insertRecord(int r, String n)
 {
 rollno=r;
 name=n;
 }
 void displayInformation(){System.out.println(rollno+" "+name);}
}
class TestStudent4
{
 public static void main(String args[])

{
 Student s1=new Student();
 Student s2=new Student();
 s1.insertRecord(111,"Karan");
 s2.insertRecord(222,"Aryan");
 s1.displayInformation();
 s2.displayInformation();
 }
}

Variable Types in Java
 Variable is name of reserved area allocated in memory.
 In other words, it is a name of memory location. It is a combination of "vary + able" that

means its value can be changed.

Types of Variables:
There are three types of variables:

1. Local Variables
2. Instance Variables
3. Static or Class variables

1. Local Variables
 A variable declared inside the body of the method is called local variable.
 This variable can use only within that method and the other methods in the class aren't

even aware that the variable exists.
2. Instance Variable
 A variable declared inside the class but outside the body of the method, is called

instance variable.

O. S. ABDUL QADIR 33

 Instance variable doesn't get memory at compile time. It gets memory at runtime when
an object or instance is created.

3. Static or Class variables
 A variable which is declared as static is called static variable. It cannot be local. You

can create a single copy of static variable and share among all the instances of the class.
 Memory allocation for static variable happens only once when the class is loaded in the

memory.

Knowing this Keyword

this is a reference variable that refers to the current object.

Usage of this keyword

1. this can be used to refer current class instance variable.
2. this can be used to invoke current class method (implicitly)
3. this() can be used to invoke current class constructor.
4. this can be passed as an argument in the method call.
5. this can be passed as argument in the constructor call.
6. this can be used to return the current class instance from the method.

Example
class Student
{

 int rno; //instance variable
 String name;
 static String college = "Jamal Mohamed College";
 Student(int rno, String y) //local variable
 {
 rno=rno;\\local variable
 this.rno=rno;\\instance
 name=y;
 }
 void display()
 {
 System.out.println("Roll No:"+ rno+ "Name:" +name+ "College:"
+college);
 }
}
class thisdemo
{
 public static void main(String args[])
 {
 Student s1 = new Student(5001, "SAQ");
 Student s2 = new Student(5002, "Asif");

 s1.display();
 s2.display();
 }
}

O. S. ABDUL QADIR 34

Variable Scope and Method Definitions
Scope of a variable is the part of the program where the variable is accessible. Scope of a
variable can determined at compile time and independent of function call stack. Java programs
are organized in the form of classes. Every class is part of some package.

Member Variables (Class Level Scope)
Java scope rules can be covered under following categories.

 We can declare class variables anywhere in class, but outside methods.
 Access specified of member variables doesn’t affect scope of them within a class.
 Member variables can be accessed outside a class with following rules

Modifier Package Subclass World
public Yes Yes Yes
protected Yes Yes No

Default
(nomodifier)

Yes No No

private No No No

Some Important Points about Variable scope in Java:

1. In general, a set of curly brackets { } defines a scope.
2. In Java we can usually access a variable as long as it was defined within the same set

of brackets as the code we are writing or within any curly brackets inside of the curly
brackets where the variable was defined.

3. Any variable defined in a class outside of any method can be used by all member
methods.

4. When a method has the same local variable as a member, “this” keyword can be used
to reference the current class variable.

5. For a variable to be read after the termination of a loop, It must be declared before the
body of the loop.

Passing arguments to methods
 There are mainly two ways of passing arguments to methods:

1. Pass by value
2. Pass by reference

 Java directly supports passing by value; however, passing by reference will be accessible
through reference objects.
1. Pass by value:
 When the arguments are passed using the pass by value, only a copy of the variables

are passed which has the scope within the method which receives the copy of these
variables.

 Any modifications to the formal parameter variable inside the called function or method
affect only the separate storage location and will not be reflected in the actual parameter
in the calling environment. This method is also called as call by value.

Example
class CallByValue
{
 public static void Example(int x, int y)
 {
 x++;
 y++;
 }

O. S. ABDUL QADIR 35

}
public class Main
{
 public static void main(String[] args)
 {
 int a = 10;
 int b = 20;
 CallByValue object = new CallByValue();
 System.out.println("Value of a: " + a + " & b: " + b);
 // Passing variables in the class function
 object.Example(a, b);
 // displaying values after calling the function
 System.out.println("Value of a: "+ a + " & b: " + b);
 }
}
OUTPUT:
Value of a: 10 & b: 20
Value of a: 10 & b: 20

2. Pass by reference:
 When parameters are passed to the methods, the calling method returns the changed

value of the variables to the called method.
 Any changes to the formal parameter are reflected in the actual parameter in the calling

environment as formal parameter receives a reference (or pointer) to the actual data.
This method is also called as call by reference.

 This method is efficient in both time and space.
Example

class CallByReference
{
 int a, b;
 CallByReference(int x, int y)
 {
 a = x; b = y;
 }
 void ChangeValue(CallByReference obj)
 {
 obj.a += 10; obj.b += 20;
 }
}
public class Main
{
 public static void main(String[] args)
 {
 CallByReference object = new CallByReference(10, 20);
 System.out.println("Value of a: "+ object.a + " & b: "+ object.b);
 object.ChangeValue(object);
 System.out.println("Value of a: "+ object.a + " & b: "+ object.b);
 }
}

O. S. ABDUL QADIR 36

OUTPUT:
Value of a: 10 & b: 20
Value of a: 20 & b: 40

Method Overloading
 The process of defining methods with same name but with different tasks is termed method

overloading.
 Java differentiates overloaded methods based on the number and type of parameters and

not on the return type of the method.
 A compiler error would occur when two methods with the same name and same parameter

list but different return types are created.
Example

class Student
{
 int rno;
 String name;
 static String college = "Jamal Mohamed College";
 Student()
 {

System.out.println("RollNo:"+rno+"\nName:"+name);
System.out.println("College:"+college);

 }
 Student(int x, String y)
 {
 rno=x;
 name=y;
 }
 void display()
 {

System.out.println("RollNo:"+rno+"\nName:"+name);
System.out.println("College:"+college);

}
 void display(int a)
 {
 System.out.println("The value of a is:"+a);
 }
}
class OverloadDemo
{
 public static void main(String args[])
 {
 Student s1 = new Student(5001, "SAQ");
 Student s2 = new Student(5002, "Asif");
 Student s3 = new Student();
 s1.display(); s2.display();
 s1.display(10);

 }
}

O. S. ABDUL QADIR 37

Constructors
 A constructor is a block of codes similar to the method.
 It is called when an instance of the class is created.
 At the time of calling constructor, memory for the object is allocated in the memory.
 It is a special type of method which is used to initialize the object.

1. Types of constructors
a. Default Constructor
b. Parameterized Constructor

2. Constructor Overloading
3. Does constructor return any value?
4. Copying the values of one object into another
5. Does constructor perform other tasks instead of the initialization

Rules for creating Java constructor
There are two rules defined for the constructor.

1. Constructor name must be the same as its class name
2. A Constructor must have no explicit return type
3. A Java constructor cannot be abstract, static, final, and synchronized

Java Constructor Java Method

A constructor is used to initialize the state
of an object.

A method is used to expose the behaviour
of an object.

A constructor must not have a return type. A method must have a return type.
The constructor is invoked implicitly. The method is invoked explicitly.
The Java compiler provides a default
constructor if you don't have any
constructor in a class.

The method is not provided by the
compiler in any case.

The constructor name must be same as
the class name.

The method name may or may not be
same as the class name.

Constructor Example

class Student
{
 int rno;
 String name;
 //String college;
 static final String college = "Jamal Mohamed College";
 Student()
 {

System.out.println("Roll No:" + rno + "\tName:" + name);
System.out.println("\tCollege:" + college);

 }
 void display()
 {

System.out.println("Roll No:" + rno + "\tName:" + name);
System.out.println("\tCollege:" + college);

 }

O. S. ABDUL QADIR 38

}
class ConstructorDemo
{
 public static void main(String args[])
 {
 Student s1 = new Student();
 Student s2 = new Student();
// Student s3 = new Student();
 s1.rno = 5001;
 s1.name="SAQ";
// s2.rno=5002;
// s2.name="Asif";
 s1.display();
// s2.display();
// s3.display();

 }
}

Parameterized Constructor Example

class Student
{

 int rno;
 String name;
 //String college;
 static String college = "Jamal Mohamed College";
/* Student(int rno, String name)
 {
 this.rno=rno;
 this.name=name;
 }*/
 Student(int x, String y)
 {
 rno=x;
 name=y;
 }
 void display()
 {

System.out.println("Roll No:" + rno + "\tName:" + name);
System.out.println("\tCollege:" + college);

 }
}
class PCDemo
{
 public static void main(String args[])
 {
 Student s1 = new Student(5001, "SAQ");
 Student s2 = new Student(5002, "Asif");

O. S. ABDUL QADIR 39

 s1.display();
 s2.display();
 }
}

Constructor Overloading
 In Java, a constructor is just like a method but without return type. It can also be overloaded

like Java methods.
 Constructor overloading in Java is a technique of having more than one constructor with

different parameter lists. They are arranged in a way that each constructor performs a
different task.

 They are differentiated by the compiler by the number of parameters in the list and their
types.
Example

//Java program to overload constructors
class Student5
{
 int id;
 String name;
 int age;
 //creating two arg constructor

Student5(int i,String n)
{

id = i;
name = n;

}
 //creating three arg constructor

Student5(int i,String n,int a)
{

id = i;
name = n;
age=a;

}
void display()
{

System.out.println(id+" "+name+" "+age);
}
public static void main(String args[])

 {
 Student5 s1 = new Student5(111,"Karan");

 Student5 s2 = new Student5(222,"Aryan",25);
 s1.display();
 s2.display();

 }
}

O. S. ABDUL QADIR 40

INHERITANCE
 Inheritance in Java is a mechanism in which one object acquires all the properties and

behaviors of a parent object.
 The idea behind inheritance in Java is that you can create new classes that are built upon

existing classes. When you inherit from an existing class, you can reuse methods and fields
of the parent class.

 Moreover, you can add new methods and fields in your current class also.

Terms used in Inheritance
 Class: A class is a group of objects which have common properties. It is a template

or blueprint from which objects are created.
 Sub Class/Child Class: Subclass is a class which inherits the other class. It is also

called a derived class, extended class, or child class.
 Super Class/Parent Class: Superclass is the class from where a subclass inherits

the features. It is also called a base class or a parent class.
 Reusability: As the name specifies, reusability is a mechanism which facilitates

you to reuse the fields and methods of the existing class when you create a new
class. You can use the same fields and methods already defined in the previous
class.

The syntax of Java Inheritance

class Subclass-name extends Superclass-name
{
 //methods and fields
}

Types of inheritance in java
1. Single
2. Multilevel
3. Hierarchical.

1. Single Inheritance
 When a class inherits another class, it is known as a single inheritance.

Example
class Animal
{

void eat()

O. S. ABDUL QADIR 41

{
System.out.println("eating...");

}
}
class Dog extends Animal
{

void bark()
{

System.out.println("barking...");
}

}
class TestInheritance
{

public static void main(String args[])
{

Dog d=new Dog();
d.bark(); d.eat();

}
}

2. Multilevel Inheritance:
 When a class extends a class, which extends anther class then this is called multilevel

inheritance.
 For example class C extends class B and class B extends class A then this type

of inheritance is known as multilevel inheritance.
 When there is a chain of inheritance, it is known as multilevel inheritance.

In the example given below, BabyDog class inherits the Dog class which again inherits the
Animal class, so there is a multilevel inheritance.
Example

class Animal
{

void eat()
{

System.out.println("eating...");
}

}
class Dog extends Animal
{

void bark()
{

System.out.println("barking...");
}

}
class BabyDog extends Dog
{

void weep()
{

System.out.println("weeping...");
}

O. S. ABDUL QADIR 42

}
class TestInheritance2
{

public static void main(String args[])
{

BabyDog d=new BabyDog();
d.weep(); d.bark();
d.eat();

}
}

3. Hierarchical Inheritance:
 Hierarchical inheritance is a kind of inheritance where more than one class is inherited from

a single parent or base class.
 When several classes are derived from common base class it is called hierarchical

inheritance.
 When two or more classes inherits a single class, it is known as hierarchical inheritance.

In the example given below, Dog and Cat classes inherits the Animal class, so there is
hierarchical inheritance.

class Animal
{

void eat()
{

System.out.println("eating...");
}

}
class Dog extends Animal
{

void bark()
{

System.out.println("barking...");
}

}
class Cat extends Animal
{

void meow()
{

System.out.println("meowing...");
}

}
class TestInheritance3
{

public static void main(String args[])
{

Cat c=new Cat();
c.meow();
c.eat();

}
}

O. S. ABDUL QADIR 43

Method Overriding in Java
 If subclass (child class) has the same method as declared in the parent class, it is known

as method overriding in Java.
 In other words, if a subclass provides the specific implementation of the method that has

been declared by one of its parent class, it is known as method overriding.
Usage of Java Method Overriding

 Method overriding is used to provide the specific implementation of a method
which is already provided by its superclass.

 Method overriding is used for runtime polymorphism
Rules for Java Method Overriding

1. The method must have the same name as in the parent class
2. The method must have the same parameter as in the parent class.
3. There must be an IS-A relationship (inheritance).
Example1

class Vehicle
{

void run()
{

System.out.println("Vehicle is running");
}

}
//Creating a child class
class Bike extends Vehicle
{
 public static void main(String args[])

{
//creating an instance of child class
Bike obj = new Bike();
//calling the method with child class instance
obj.run();

}
}

//Java Program to illustrate the use of Java Method Overriding
//Creating a parent class.
class Vehicle
{

void run()
{

System.out.println("Vehicle is running");
}

}
//Creating a child class
class Bike2 extends Vehicle
{

//defining the same method as in the parent class
void run()
{

System.out.println("Bike is running safely");

O. S. ABDUL QADIR 44

}
 public static void main(String args[])
 {
 Bike2 obj = new Bike2();//creating object
 obj.run();//calling method
 }
}

Example2

class Bank
{

int getRateOfInterest()
{

return 0;
}

}
//Creating child classes.
class SBI extends Bank
{

int getRateOfInterest()
{

return 8;
}

}
 class ICICI extends Bank

{
int getRateOfInterest()
{

return 7;
}

}
class AXIS extends Bank
{

int getRateOfInterest()
{

return 9;
}

}

//Test class to create objects and call the methods
class Test2
{

public static void main(String args[])
{

SBI s=new SBI();
ICICI i=new ICICI();
AXIS a=new AXIS();

System.out.println("SBI Rate of Interest: "+s.getRateOfInterest());
System.out.println("ICICI Rate of Interest: "+i.getRateOfInterest());

O. S. ABDUL QADIR 45

System.out.println("AXIS Rate of Interest: "+a.getRateOfInterest());
}

}

Difference between method overloading and method overriding in java

No. Method Overloading Method Overriding

1
Method overloading is used to increase
the readability of the program.

Method overriding is used to provide
the specific implementation of the
method that is already provided by its
super class.

2
Method overloading is performed within
class.

Method overriding occurs in two
classes that have IS-A (inheritance)
relationship.

3
In case of method overloading, parameter
must be different.

In case of method
overriding, parameter must be same.

4
Method overloading is the example
of compile time polymorphism.

Method overriding is the example
of run time polymorphism.

5

In java, method overloading can't be
performed by changing return type of the
method only. Return type can be same or
different in method overloading. But you
must have to change the parameter.

Return type must be same or
covariant in method overriding.

MODIFIERS
There are two types of modifiers in Java:

1. Access Modifiers - controls the access level
2. Non-Access Modifiers - do not control access level, but provides other functionality

1. Access Modifiers
There are four types of Java access modifiers:

1. Private: The access level of a private modifier is only within the class. It cannot be
accessed from outside the class.

2. Default: The access level of a default modifier is only within the package. It cannot be
accessed from outside the package. If you do not specify any access level, it will be the
default.

3. Protected: The access level of a protected modifier is within the package and outside
the package through child class. If you do not make the child class, it cannot be accessed
from outside the package.

4. Public: The access level of a public modifier is everywhere. It can be accessed from
within the class, outside the class, within the package and outside the package.

The four access levels are −
 Visible to the package, the default. No modifiers are needed.
 Visible to the class only (private).
 Visible to the world (public).
 Visible to the package and all subclasses (protected).
Let's understand the access modifiers in Java by a simple table.

O. S. ABDUL QADIR 46

Access
Modifier

within class
within

package
outside package
by subclass only

outside
package

Private Yes No No No

Default Yes Yes No No

Protected Yes Yes Yes No
Public Yes Yes Yes Yes

1. Private
 The private access modifier is accessible only within the class.
 Simple example of private access modifier
 In this example, we have created two classes A and Simple.
 A class contains private data member and private method. We are accessing these

private members from outside the class, so there is a compile-time error.
class A
{

private int data=40;
private void msg()
{

System.out.println("Hello java");
}

}

public class Simple
{

public static void main(String args[])
{

A obj=new A();
System.out.println(obj.data); //Compile Time Error
obj.msg(); //Compile Time Error

}
}

If you make any class constructor private, you cannot create the instance of that class
from outside the class. For example:
class A
{

private A()
{} //private constructor
void msg()
{

System.out.println("Hello java");
}

}
public class Simple
{

public static void main(String args[])
{

A obj=new A(); //Compile Time Error
}

O. S. ABDUL QADIR 47

}

2) Default
 If you don't use any modifier, it is treated as default by default. The default modifier is

accessible only within package. It cannot be accessed from outside the package.
 It provides more accessibility than private. But, it is more restrictive than protected, and

public.

Example of default access modifier
In this example, we have created two packages pack and mypack. We are accessing the A
class from outside its package, since A class is not public, so it cannot be accessed from
outside the package.

//save by A.java
package pack;
class A
{

void msg()
{

System.out.println("Hello");
}

}

//save by B.java
package mypack;
import pack.*;
class B
{

public static void main(String args[])
{

A obj = new A(); //Compile Time Error
obj.msg(); //Compile Time Error

}
}

3) Protected
 The protected access modifier is accessible within package and outside the package

but through inheritance only.
 The protected access modifier can be applied on the data member, method and

constructor.
 It can't be applied on the class.
 It provides more accessibility than the default modifer.

Example of protected access modifier
In this example, we have created the two packages pack and mypack. The A class of
pack package is public, so can be accessed from outside the package. But msg method
of this package is declared as protected, so it can be accessed from outside the class
only through inheritance.

//save by A.java
package pack;

O. S. ABDUL QADIR 48

public class A
{

protected void msg()
{

System.out.println("Hello");
}

}

//save by B.java
package mypack;
import pack.*;
class B extends A
{

public static void main(String args[])
{

B obj = new B();
obj.msg();

}
}

4) Public
 The public access modifier is accessible everywhere. It has the widest scope among

all other modifiers.
Example of public access modifier

//save by A.java
package pack;
public class A
{

public void msg()
{

System.out.println("Hello");
}

}
//save by B.java
package mypack;
import pack.*;
class B
{

public static void main(String args[])
{

A obj = new A();
obj.msg();

}
}

Non-Access Modifiers
Java provides a number of non-access modifiers to achieve many other functionality.

 The static modifier for creating class methods and variables.

O. S. ABDUL QADIR 49

 The final modifier for finalizing the implementations of classes, methods, and
variables.

 The abstract modifier for creating abstract classes and methods.
 The synchronized and volatile modifiers, which are used for threads.

For classes, you can use either final or abstract:

Modifier Description
final The class cannot be inherited by other classes

abstract
The class cannot be used to create objects (To access an abstract class, it must
be inherited from another class.

For attributes and methods, you can use the one of the following:

Modifier Description
final Attributes and methods cannot be overridden/modified
static Attributes and methods belongs to the class, rather than an object

abstract
Can only be used in an abstract class, and can only be used on methods.
The method does not have a body, for example abstract void run();. The
body is provided by the subclass (inherited from).

transient
Attributes and methods are skipped when serializing the object containing
them

synchronized Methods can only be accessed by one thread at a time

volatile
The value of an attribute is not cached thread-locally, and is always read
from the "main memory"

Finalizing Classes, Methods and Variables
Final Keyword
The final keyword in java is used to restrict the user. The java final keyword can be used in
many context. Final can be:

1. variable
2. method
3. class

1) Java final variable
If you make any variable as final, you cannot change the value of final variable(It will
be constant).
2) Java final method
If you make any method as final, you cannot override it.
Example of final method

class Bike
{

final void run()
{

System.out.println("running");
}

}
 class Honda extends Bike

{
void run()
{

System.out.println("running safely with 100kmph");

O. S. ABDUL QADIR 50

}
 public static void main(String args[])

{
Honda honda= new Honda();
honda.run();

}
}

OUTPUT:
Compile Time Error

3) Java final class
If you make any class as final, you cannot extend it.
Example of final class

final class Bike
{}

class Honda1 extends Bike
{

void run()
{

System.out.println("running safely with 100kmph");
}

public static void main(String args[])
{

Honda1 honda= new Honda1();
honda.run();

}
}
OUTPUT:
Compile Time Error

STATIC KEYWORD
 The static keyword in Java is used for memory management mainly. We can apply static

keyword with variables, methods, blocks and nested classes.
 The static keyword belongs to the class than an instance of the class. The static can be:

1. Variable (also known as a class variable)
2. Method (also known as a class method)
3. Block
4. Nested class

1) Java static variable
If you declare any variable as static, it is known as a static variable.
 The static variable can be used to refer to the common property of all objects (which

is not unique for each object), for example, the company name of employees, college
name of students, etc.

 The static variable gets memory only once in the class area at the time of class
loading.

Program of the counter without static variable

O. S. ABDUL QADIR 51

In this example, we have created an instance variable named count which is incremented
in the constructor. Since instance variable gets the memory at the time of object creation,
each object will have the copy of the instance variable. If it is incremented, it won't reflect
other objects. So each object will have the value 1 in the count variable.

//Java Program to demonstrate the use of an instance variable
//which get memory each time when we create an object of the class.
class Counter
{

int count=0;//will get memory each time when the instance is created
 Counter()

{
count++;//incrementing value
System.out.println(count);

}
 public static void main(String args[])

{
Counter c1=new Counter();
Counter c2=new Counter();
Counter c3=new Counter();

}
}

Program of counter by static variable
As we have mentioned above, static variable will get the memory only once, if any object
changes the value of the static variable, it will retain its value.

//Java Program to illustrate the use of static variable which is shared with all objects.
class Counter2
{

static int count=0;
 //will get memory only once and retain its value
 Counter2()

{
count++; //incrementing the value of static variable
System.out.println(count);

}
 public static void main(String args[])

{
//creating objects
Counter2 c1=new Counter2();
Counter2 c2=new Counter2();
Counter2 c3=new Counter2();

}
}

2) Java static method

If you apply static keyword with any method, it is known as static method.
 A static method belongs to the class rather than the object of a class.
 A static method can be invoked without the need for creating an instance of a class.
 A static method can access static data member and can change the value of it.

O. S. ABDUL QADIR 52

Example of static method
//Java Program to demonstrate the use of a static method.
class Student
{

int rollno;
 String name;
 static String college = "ITS";

 //static method to change the value of static variable
 static void change()

{
 college = "BBDIT";
 }

 //constructor to initialize the variable
 Student(int r, String n)

{
 rollno = r;
 name = n;
 }

 //method to display values
 void display()

{
System.out.println(rollno+" "+name+" "+college);

}
}

//Test class to create and display the values of object
public class TestStaticMethod
{

public static void main(String args[])
{

 Student.change();//calling change method
 Student s1 = new Student(111,"Karan");
 Student s2 = new Student(222,"Aryan");
 Student s3 = new Student(333,"Sonoo");
 //Calling objects
 s1.display();
 s2.display();
 s3.display();
 }
}

Another example of a static method that performs a normal calculation
//Java Program to get the cube of a given number using the static method
 class Calculate
{

static int cube(int x)

O. S. ABDUL QADIR 53

{
return x*x*x;

}
 public static void main(String args[])

{
int result=Calculate.cube(5);
System.out.println(result);

}
}

Restrictions for the static method
There are two main restrictions for the static method.
They are:

1. The static method cannot use non static data member or call non-static method
directly.

2. this and super cannot be used in static context.
class A
{

int a=40; //non static
 public static void main(String args[])

{
System.out.println(a);

}
}

3) Java static block
 Is used to initialize the static data member.
 It is executed before the main method at the time of class loading.

Example of static block
class A2
{

Static
{

System.out.println("static block is invoked");
}
public static void main(String args[])
{

System.out.println("Hello main");
}

}

Abstract class in Java
 Abstract classes are classes whose sole purpose is to provide common information for sub-

classes. They can have no instances i.e we cannot create object.
 Abstract methods are methods with signatures, but no implementation. The sub-classes of

the class that contains that abstract method must provide its actual implementation.
 A class which is declared as abstract is known as an abstract class. It can have abstract

and non-abstract methods. It needs to be extended and its method implemented. It cannot
be instantiated.

O. S. ABDUL QADIR 54

Rules for Abstract class
 An abstract class must be declared with an abstract keyword.
 It can have abstract and non-abstract methods.
 It cannot be instantiated.
 It can have constructors and static methods also.
 It can have final methods which will force the subclass not to change the body of the

method.

//Example of an abstract class that has abstract and non-abstract methods
 abstract class Bike
{

Bike()
{

System.out.println("bike is created");
}
abstract void run();
void changeGear()
{

System.out.println("gear changed");
}

 }

//Creating a Child class which inherits Abstract class
 class Honda extends Bike
{

 void run()
{

System.out.println("running safely..");
}

 }

//Creating a Test class which calls abstract and non-abstract methods
 class TestAbstraction
{

public static void main(String args[])
{

 Bike obj = new Honda();
 obj.run();
 obj.changeGear();

 }
}

OUTPUT

 bike is created
 running safely..
 gear changed

O. S. ABDUL QADIR 55

PACKAGES
 A java package is a group of similar types of classes, interfaces and sub-packages.
 Package in java can be categorized in two form, built-in package and user-defined package.
 There are many built-in packages such as java, lang, awt, javax, swing, net, io, util, sql etc.

Advantage of Java Package
1. Java package is used to categorize the classes and interfaces so that they can be

easily maintained.
2. Java package provides access protection.
3. Java package removes naming collision.

The package keyword is used to create a package in java.

//save as Simple.java
package mypack;
public class Simple
{

 public static void main(String args[])
{

 System.out.println("Welcome to package");
 }
}

Access package from another package
There are three ways to access the package from outside the package.

1. import package.*;
2. import package.classname;
3. fully qualified name.

1. Using packagename.*
 If you use package.* then all the classes and interfaces of this package will be accessible

but not subpackages.
 The import keyword is used to make the classes and interface of another package

accessible to the current package.
Example

//save by A.java
package pack;

O. S. ABDUL QADIR 56

public class A
{

public void msg()
{

System.out.println("Hello");
}

}
//save by B.java
package mypack;
import pack.*;
class B
{

public static void main(String args[])
{

A obj = new A();
obj.msg();

}
}

2. Using packagename.classname
 If you import package.classname then only declared class of this package will be

accessible.
//save by A.java
package pack;
public class A
{

public void msg()
{

System.out.println("Hello");
}

}
//save by B.java
package mypack;
import pack.A;
class B
{

public static void main(String args[])
{

A obj = new A();
obj.msg();

}
}

3) Using fully qualified name
 If you use fully qualified name then only declared class of this package will be accessible.

Now there is no need to import. But you need to use fully qualified name every time
when you are accessing the class or interface.

 It is generally used when two packages have same class name e.g. java.util and java.sql
packages contain Date class.

O. S. ABDUL QADIR 57

//save by A.java
package pack;
public class A
{

public void msg()
{

System.out.println("Hello");
}

}
//save by B.java
package mypack;
class B
{

public static void main(String args[])
{

pack.A obj = new pack.A();//using fully qualified name
obj.msg();

}
}

Package Class
The package class provides methods to get information about the specification and
implementation of a package. It provides methods such as getName(),
getImplementationTitle(), getImplementationVendor(), getImplementationVersion() etc.

Example
class PackageInfo
{

public static void main(String args[])
{

Package p=Package.getPackage("java.lang");
System.out.println("package name: "+p.getName());
System.out.println("Specification Title: "+p.getSpecificationTitle());
System.out.println("Specification Vendor: "+p.getSpecificationVendor());
System.out.println("Specification Version: "+p.getSpecificationVersion());

 System.out.println("Implementaion Title: "+p.getImplementationTitle());
 System.out.println("Implementation Vendor: "+p.getImplementationVendor());

System.out.println("Implementation Version: "+p.getImplementationVersion());
System.out.println("Is sealed: "+p.isSealed()); 0

}
}
OUTPUT:
 package name: java.lang
 Specification Title: Java Plateform API Specification
 Specification Vendor: Sun Microsystems, Inc.
 Specification Version: 1.6
 Implemenation Title: Java Runtime Environment
 Implemenation Vendor: Sun Microsystems, Inc.
 Implemenation Version: 1.6.0_30
 IS sealed: false

O. S. ABDUL QADIR 58

INTERFACES
 Interfaces, like abstract classes and methods, provide templates of behaviour that other

classes are expected to implement.
 An interface is a blueprint of a class. It has static constants and abstract methods.
 The interface in Java is a mechanism to achieve abstraction. There can be only abstract

methods in the Java interface, not method body.
 It is used to achieve abstraction and multiple inheritance in Java.
 In other words, you can say that interfaces can have abstract methods and variables. It

cannot have a method body.
 It cannot be instantiated just like the abstract class.

Interfaces and Classes
 An interface in Java is a blueprint of a class. It has final static constants and abstract

methods.
 A class extends another class, an interface extends another interface, but a class

implements an interface.

Creating an interface
 To create an interface, the keyword interface should be used.
 It provides total abstraction; means all the methods in an interface are declared with the

empty body, and all the fields are public, static and final by default.
 A class that implements an interface must implement all the methods declared in the

interface.
public interface <interface_name>
{

 // declare constant fields
 // declare methods that abstract by default.
 }

The methods within the interface can carry modifiers such as public and abstract.
public interface ExampleInterface1
{
 public static final int triple = 3;
 int twice = 2;
 public abstract void method1(); //explicitly public and abstract
 void method2(); //effectively public and abstract
}

Implementing Interfaces
 When a class implements an interface, you can think of the class as signing a contract,

agreeing to perform the specific behaviors of the interface.
 If a class does not perform all the behaviors of the interface, the class must declare itself as

abstract.
When implementation interfaces, there are several rules −

O. S. ABDUL QADIR 59

 A class can implement more than one interface at a time.
 A class can extend only one class, but implement many interfaces.
 An interface can extend another interface, in a similar way as a class can extend another

class.
A class uses the implements keyword to implement an interface. The implements keyword
appears in the class declaration following the extends portion of the declaration.
Example

interface printable
{

void print();
}
class A6 implements printable
{

public void print()
{

System.out.println("Hello");
}
public static void main(String args[])
{

A6 obj = new A6();
obj.print();

 }
}

Example 2

interface Drawable
{

void draw();
}

//Implementation: by second user
class Rectangle implements Drawable
{

public void draw()
{

System.out.println("drawing rectangle");
}

}
class Circle implements Drawable
{

public void draw()
{

System.out.println("drawing circle");
}

}

//Using interface: by third user
class TestInterface1
{

O. S. ABDUL QADIR 60

public static void main(String args[])
{

Drawable d=new Circle();
d.draw();

}
}

Multiple inheritance in Java by interface
If a class implements multiple interfaces, or an interface extends multiple interfaces, it is
known as multiple inheritance.

 Example

interface Printable
{

void print();
}
interface Showable
{

void show();
}
class A7 implements Printable,Showable
{

public void print()
{

System.out.println("Hello");
}
public void show()
{

System.out.println("Welcome");
}

public static void main(String args[])
{

A7 obj = new A7();
obj.print();
obj.show();

}
}

O. S. ABDUL QADIR 61

Q) Multiple inheritance is not supported through class in java, but it is possible by an interface,
why?

As we have explained in the inheritance chapter, multiple inheritance is not supported
in the case of class because of ambiguity. However, it is supported in case of an interface
because there is no ambiguity. It is because its implementation is provided by the
implementation class. For example:

interface Printable
{

void print();
}
interface Showable
{

void print();
}

class TestInterface3 implements Printable, Showable
{

public void print()
{

System.out.println("Hello");
}
public static void main(String args[])
{

TestInterface3 obj = new TestInterface3();
obj.print();

 }
}

Extending Interfaces
 An interface can extend another interface in the same way that a class can extend another

class.
 The extends keyword is used to extend an interface, and the child interface inherits the

methods of the parent interface.
Interface inheritance
A class implements an interface, but one interface extends another interface.

interface Printable
{

void print();
}
interface Showable extends Printable
{

void show();
}
class TestInterface4 implements Showable
{

public void print()
{

System.out.println("Hello");
}

O. S. ABDUL QADIR 62

public void show()
{

System.out.println("Welcome");
}

public static void main(String args[])
{

TestInterface4 obj = new TestInterface4();
obj.print();
obj.show();

}
}

O. S. ABDUL QADIR 63

UNIT III
Exception Handling
 An Exception is an abnormal condition occurring during the execution of a program.

An exception is an event that may cause abnormal termination of the program during its
execution.

 Different types of errors like user errors, logic errors or system errors can cause

exception.
Example: Division by zero, out of array bounds, running out of virtual memory, opening
an invalid file.

 Exception Handling is a mechanism that enables programs to detect and handle errors
before they occur.

Example:
class ExceptionDemo
{

 public static void main(String[] args)
 {
 int a, b, c;
 System.out.println("Program Begins...");

 a = Integer.parseInt(args[0]);
 b = Integer.parseInt(args[1]);
 c = a / b;
 System.out.println (a + "/" + b + "=" + c);
 System.out.println("Program Ends...");
 }
 }

Basics of Exception Handling
There are 5 keywords which are used in handling exceptions in Java.

Keyword Description

try
The "try" keyword is used to specify a block where we should place exception
code. The try block must be followed by either catch or finally. It means, we
can't use try block alone.

catch
The "catch" block is used to handle the exception. It must be preceded by try
block which means we can't use catch block alone. It can be followed by
finally block later.

finally
The "finally" block is used to execute the important code of the program. It is
executed whether an exception is handled or not.

throw The "throw" keyword is used to throw an exception.

throws
The "throws" keyword is used to declare exceptions. It doesn't throw an
exception. It specifies that there may occur an exception in the method. It is
always used with method signature.

The three important features that an exception usually carries are

1. The type of exception – determined by the class of the exception object
2. Where the exception occur – the stack trace
3. Context information – the error message and other state information

O. S. ABDUL QADIR 64

Exception Hierarchy
The java.lang.Throwable class is the root class of Java Exception hierarchy which is inherited
by two subclasses: Exception and Error. A hierarchy of Java Exception classes are given
below:

O. S. ABDUL QADIR 65

Constructors and Methods in Throwable Class
There are four constructors in the Throwable class:

S.No. Constructor Description

1 Throwable()
This constructs a new throwable with null as its detail
message.

2
Throwable(String
message)

This constructs a new throwable with the specified
detail message.

3
Throwable(String message,
Throwable cause)

This constructs a new throwable with the specified
detail message and cause.

4
Throwable(Throwable
cause)

This constructs a new throwable with the specified
cause and a detail message of (cause==null ? null :
cause.toString()) (which typically contains the class
and detail message of cause).

Methods in Throwable Classes
The following is the list of three useful methods that provide information about an exception

S.No. Methods Description

1 getMessage()
Returns a detailed message about the exception that has
occurred. This message is initialized in the Throwable
constructor.

2 toString()
Returns the name of the class concatenated with the result of
getMessage().

3 printStackTrace()
Prints the result of toString() along with the stack trace to
System.err, the error output stream.

The methods of Throwable class that deal with StackTrace are the following

S.No. Methods Description

1 fillInStackTrace()
Fills the stack trace of this Throwable object with the
current stack trace, adding to any previous information
in the stack trace.

2 getStackTrace()

Returns an array containing each element on the stack
trace. The element at index 0 represents the top of the
call stack, and the last element in the array represents
the method at the bottom of the call stack.

3 printStackTrace()
Prints the result of toString() along with the stack trace
to System.err, the error output stream.

4
setStackTrace
(StackTraceElement []
stackTrace)

Unchecked and Checked Exception
Types of Java Exceptions
There are mainly two types of exceptions: checked and unchecked.

1. Checked Exception
2. Unchecked Exception

1) Checked Exception
 The classes which directly inherit Throwable class except RuntimeException and Error are

known as checked exceptions. Checked exceptions are checked at compile-time.

O. S. ABDUL QADIR 66

 These exceptions cannot be ignored.
e.g. IOException, SQLException etc.

2) Unchecked Exception
 The classes which inherit RuntimeException are known as unchecked exceptions.

Unchecked exceptions are not checked at compile-time, but they are checked at runtime.

 These exceptions can be handled or ignored.
e.g. ArithmeticException, NullPointerException, ArrayIndexOutOfBoundsException etc.

Handling Exceptions in Java
 Exception handling in java is accomplished by using five keywords:

1. try,
2. catch,
3. throw,
4. throws and
5. finally

 In java the code that may generate an exception is enclosed in a try block.
 The try block can be followed immediately by one or more catch blocks with a finally block

as the last block. The try block can also end without a catch block, and the catch blocks
need not always have finally as the last block. If there are no catch blocks following try
block, the finally block is required.

 If the exception type thrown matches the parameter type in one of the catch blocks, the
code for that catch block is executed.

1. Try Block
Java try block is used to enclose the code that might throw an exception. It must be used within
the method.

If an exception occurs at the particular statement of try block, the rest of the block code will
not execute. So, it is recommended not to keeping the code in try block that will not throw an
exception. Java try block must be followed by either catch or finally block.

Syntax of try-catch block
try
{

//code that may throw an exception
}
catch(Exception_class_Name ref)
{
}

Syntax of try-finally block

try
{

//code that may throw an exception
}
finally
{
}

O. S. ABDUL QADIR 67

2. Catch Block

 When an exception occurs in a try block, program control is transferred to the appropriate

catch block. The catch block is specified by the keyword catch followed by a single

argument within parenthesis ().

 The catch block must be used after the try block only.

Example:
class ExceptionDemo
{
 public static void main(String[] args)
 {
 int a, b, c;
 System.out.println("Program Begins...");
 try
 {
 a = Integer.parseInt(args[0]);
 b = Integer.parseInt(args[1]);
 c = a / b;
 System.out.println (a + "/" + b + "=" + c);
 }
 catch(Exception e)
 {
 System.out.println(e);
 }
 System.out.println("Program Ends...");
 }
}

OUTPUT

java ExceptionDemo 4 2
Program Begins...
4/2 = 2
Program Ends...

java ExceptionDemo a 3
Program Begins...
java.lang.NumberFormatException: a
Program Ends...

java ExceptionDemo 4 0
Program Begins...
java.lang.ArithmeticException: / by zero

Program Ends...

java ExceptionDemo 4
Program Begins...
java.lang.ArrayIndexOutOfBoundsException
Program Ends...

3. Finally Block
 Finally block in java can be used to put "cleanup" code such as closing a file, closing

connection etc.
 Java finally block is a block that is used to execute important code such as closing

connection, stream etc. Java finally block is always executed whether exception is handled
or not.

 Java finally block follows try or catch block.

Example:

O. S. ABDUL QADIR 68

class ExceptionDemo
{
 public static void main(String[] args)
 {
 int a, b, c;
 System.out.println("Program Begins...");
 try
 {
 a = Integer.parseInt(args[0]);
 b = Integer.parseInt(args[1]);
 c = a / b;
 System.out.println (a + "/" + b + "=" + c);
 }
 catch(Exception e)
 {
 System.out.println(e);
 }
 finally
 {
 System.out.println(“Finally blocks always get executed”);
 }
 System.out.println("Program Ends...");
 }
}

OUTPUT

java ExceptionDemo 4 2
Program Begins...
4/2 = 2
Finally blocks always get executed
Program Ends...
java ExceptionDemo 4 0
Program Begins...
java.lang.ArithmeticException: / by zero
Finally blocks always get executed
Program Ends...

4. The Keyword throw
 An exception can be caught only if it is identified, or, in other words, thrown.
 Exceptions can be thrown by the Java run-time system for the code that has been written.

This can be achieved also by using the throw statement explicitly.
 This statement starts with the keyword throw followed by a single argument.

Syntax of throw statement
throw <Exception object>

 In a specific case where an instance of ‘Exception object’ is to be thrown, it takes the
following form:

throw new <Exception object>
Usually the above statement is used to pass a string argument along with the exceptional
object, so that the string can be displayed when the exception is handled.

O. S. ABDUL QADIR 69

Example:
class ExceptionDemo
{
 public static void main(String[] args)
 {
 int number1=15, number2=10;
 if(number1 > number2) //Conditional statement.
 throw new Exception(“number1 is 15”);
 else
 System.out.println(“number2 is 15”);
 }
}

OUTPUT
Exception in thread “main” java.Exception: number1 is 15 as TestThrow.main
(TestThrow.java:8)

Multiple Catch Blocks
 A try block can be followed by one or more catch blocks. Each catch block must contain a

different exception handler. At a time only one exception occurs and at a time only one
catch block is executed.

 All catch blocks must be ordered from most specific to most general, i.e. catch for
ArithmeticException must come before catch for Exception.

Example:
class ExceptionDemo
{

 public static void main(String[] args)
 {
 int a, b, c;
 System.out.println("Program Begins...");
 try
 {
 a = Integer.parseInt(args[0]);
 b = Integer.parseInt(args[1]);
 c = a / b;
 System.out.println (a + "/" + b + "=" + c);
 }
 catch(NumberFormatException e)
 {
 System.out.println(“Arguments passed should be valid Numbers”);
 }
 catch(ArithmeticException e)
 {
 System.out.println(“Second Argument should not be Zero”);
 }

catch(ArrayIndexOutOfBoundsException e)
 {
 System.out.println(“Pass Proper Arguments”);
 }

O. S. ABDUL QADIR 70

System.out.println("Program Ends...");
 }

}

Nested Try Statements
 The try block within a try block is known as nested try block in java.
 Sometimes a situation may arise where a part of a block may cause one error and the entire

block itself may cause another error. In such cases, exception handlers have to be nested.
 If no catch statement matches, then the Java run-time system will handle the exception.

Example:
class ExceptionDemo
{

 public static void main(String[] args)
 {
 int a, b, c;
 System.out.println("Program Begins...");
 try
 {
 a = Integer.parseInt(args[0]);
 b = Integer.parseInt(args[1]);
 try
 {
 c = a / b;
 System.out.println (a + "/" + b + "=" + c);
 }

catch(ArithmeticException e)
 {
 System.out.println(“Second Argument should not be Zero”);
 }
 }

catch(NumberFormatException e)
 {
 System.out.println(“Arguments passed should be valid Numbers”);
 }
 catch(ArrayIndexOutOfBoundsException e)
 {
 System.out.println(“Pass Proper Arguments”);
 }

System.out.println("Program Ends...");
 }

}

Exception and Inheritance
 While using multiple catch statements, it is important to be aware of the order of exception

classes and arrange them correctly.
 If a super-class exception is coded first in the catch block then, when an exception occurs,

the super-class exception gets executed whereas the sub-class exception catch block never
gets executed.

O. S. ABDUL QADIR 71

Incorrect ordering of catch blocks
class ExceptionDemo
{

 public static void main(String[] args)
 {
 int a, b, c;
 System.out.println("Program Begins...");
 try
 {
 a = Integer.parseInt(args[0]);
 b = Integer.parseInt(args[1]);
 c = a / b;
 System.out.println (a + "/" + b + "=" + c);
 }
 catch(ArithmeticException e)
 {
 System.out.println(“Second Argument should not be Zero”);
 }
 catch(Exception e)
 {
 System.out.println(“Exception caught”+e);
 }
 }

}
Correct ordering of catch blocks
class ExceptionDemo
{

 public static void main(String[] args)
 {
 int a, b, c;
 System.out.println("Program Begins...");
 try
 {
 a = Integer.parseInt(args[0]);
 b = Integer.parseInt(args[1]);
 c = a / b;
 System.out.println (a + "/" + b + "=" + c);
 }
 catch(Exception e)
 {
 System.out.println(“Exception caught”+e);
 }
 catch(ArithmeticException e)
 {
 System.out.println(“Second Argument should not be Zero”);
 }
 }

}

O. S. ABDUL QADIR 72

Throwing User-defined Exceptions
User-defined exceptions are useful to handle business applicaton-specific error conditions.
When creating user-defined exceptions, the name of the exception type should not be a
reserved exception type name.
User-defined exceptions are provided by an application provider or a Java API provider.
Generally, all the exceptions are sub-classes of the class Throwable.

User-defined exceptions should be sub-classes of Exception.

Syntax of user-defined exception as an instance
 Throwable UserException = new Throwable();
 or
 Throwable UserException = new Throwable(“This is user exception message”);

Syntax of user-defined exception using extends keyword
 class UserException extends Exception
 {
 public UserException()
 {
 .….
 }
 public UserException(String str)
 {
 .….
 }
 …..
 }

Example

class UserException extends Exception
{
 public UserException()
 {
 super(s);

System.out.println(“From User Exception Constructor”);
}

}
class ExceptionDemo
{

 public static void main(String[] args)
 {
 int a, b, c;
 System.out.println("Program Begins...");
 try
 {
 a = Integer.parseInt(args[0]);
 b = Integer.parseInt(args[1]);
 if(b==0)

O. S. ABDUL QADIR 73

 {
 throw new UserException(“Second Argument should not be Zero”);
 }
 c = a / b;
 System.out.println (a + "/" + b + "=" + c);
 }
 catch(UserException e)
 {
 System.out.println(“From UserException catch Statement”);
 }
 catch(Exception e)
 {
 System.out.println(e);
 }

 }

}

OUTPUT

java ExceptionDemo 4 0
Program Begins...
From User Exception Constructor
From UserException catch Statement
UserException: Second Argument should not be Zero
Program Ends...

Redirecting and Rethrowing Exception
1. Redirecting Exception using throws
 Recall that the code capable of throwing an exception is kept in the try block and the

exceptions are caught in the catch block.
 When there is no appropriate catch block to handle the (checked) exception that was thrown

by an object, the compiler does not compile the program. To overcome this, Java allows
the programmer to redirect exceptions that have been raised up the call stack, by using the
keyword throws.

 Thus, an exception thrown by a method can be handled either in the method itself or passed
to a different method in the call stack.

 To pass exceptions up to the call stack, the method must be declared with a throws clause.
All the exceptions thrown by a method can be declared with a single throws clause; the clause
consists of the keyword throws followed by a comma-separated list of all the exceptions, as
shown below:

void RedirectExMethod() throws Exception A, Exception B, Exception C
{
}
Program illustrates two methods redirecting an exception Exception from the method throwing
it, that is, ConvertAndDivide, to the calling method, main.

public class Divide
{
 public static void main(String[] args)

O. S. ABDUL QADIR 74

 {
 System.out.println("\n Program Execution starts here\n");
 try
 {
 convertAndDivide (args[0],args[1]);
 }

 catch(Exception e)
 {
 System.out.println (e.getMessage () +"\n");
 e.printStackTrace ();
 }
 System.out.println("\n Program Execution Completes here");
 }
 static void convertAndDivide (String s 1,String s2) throwsException

{
 int a, b, c;
 a = Integer.parselnt (s1);
 b = Integer.parselnt (s2);
 c = divide (a, b);
 System.out.println(a + "/" + b + "=" + C);
 }
 static int divide(int x, int y) throws Exception

{
if (y==0)

 throw new Exception("Second Argument is Zero ...");
 return x/y;

 }

}

OUTPUT
Program Execution starts here
Second Argument is Zero …
Program Execution Completes here
1
java Divide 4 a
Program Execution starts here a
java.lang.NumberFormatException: a
at java.lang.lnteger.parse Int (1nteger.java:426)
at java.lang.lnteger.parsel Int (1ntege r.java:476)
at Divide.convertAndDivide (Divide.java:26)
at Divide.main (Divide,java:9)
Program Execution Completes here

Rethrowing an Exception
 An exception that is caught in the try block can be thrown once again and can be handled.

The try block just above the rethrow statement will catch the rethrown object. If there is no

O. S. ABDUL QADIR 75

try block just above the rethrow statement then the method containing the rethrow statement
handles it.

 To propagate an exception, the catch block can choose to rethrow the exception by using
the throw statement. Note that there is no special syntax for rethrowing. Program illustrates
how an exception can be rethrown.

Program Rethrowing exceptions.
public class Divide
{

 public static void main(String[] args)
{

 int a, b, c;
try
{

 a = Integer.parselnt (args [0]);
 b = Integer.parselnt (args [l]);

 try
{

 c = a/b;
 System.out.println (a + "I" + b + "=" + c);
 }

 catch (ArithmeticException e)
{

 System.out.println ("Second Argument Should not be Zero");
 System.out.println ("Rethrowing the object again");
 throw e;
 }

 }
 catch(ArraylndexOutOfBoundsException e)
 {

System.out.println("Arguments passed should be valid Numbers");
System.out.println(Pass Proper Arguments");

}
 System.out.println("\n Program Execution Completes here");
 }

}
 Often first-time readers may get confused about the use of the three keywords: throw,

throws and Throwable. It is therefore useful to dwell on the three concepts together in order
to clarify their meaning.

 Throwable is a class. Though the Throwable class is derived from the java.lang.Object class
in the Java class library, Throwable is the super-class of all classes that handle exceptions.

 The keyword throw is a statement that throws an exception. Note that an exception can be
thrown either by the throw statement or when an error occurs during the execution of any
other statement.

O. S. ABDUL QADIR 76

 The keyword throws is a clause specified in the method definition which indicates that the
method throws the exceptions mentioned after the keyword throws, which are handled in
the called methods.

Advantages of the Exception-Handling Mechanism
The main advantages of the exception-handling mechanism in object oriented programming

over the traditional error-handling mechanism are the following:
1. The separation of error-handling code from normal code: Unlike traditional

programming languages, there is a clear cut distinction between the normal code and
the error-handling code. This separation results in less complex and more readable
code. Further it is also more efficient, in the sense that the checking of errors in the
normal execution path is not needed, and thus requires CPU cycles.

2. A logical grouping of error types: Executions can be used to group together errors that
are related. This will enable us to handle related exceptions using a single exception
handler. When an exception is thrown, an object of one of the exception classes is
passed as a parameter. Objects are instances of classes, and classes fall into an
inheritance hierarchy in java. This hierarchy can be used to logically group exceptions.
Thus, an exception handler can catch exceptions of the class specified by its parameter,
or can catch exceptions of any of its sub-classes.

3. The ability to propagate errors up the call stack: Another important advantage of

exception handling in object oriented programming is the ability to propagate errors up
the call stack. Exception handling allows contextual information to be captured at the
point where the error occurs and to propagate it to a point where it can be effectively
handled. This is different from traditional error-handling mechanisms in which the
return values are checked and propagated to the calling function.

Multithreading

 Java is a multithreaded programming language which means we can develop multithreaded

program using Java.

 A multithreaded program contains two or more parts that can run concurrently and each

part can handle different task at the same time making optimal use of the available resources

especially when your computer has multiple CPUs.

 By definition multitasking is when multiple processes share common processing resources

such as a CPU.

 Multithreading extends the idea of multitasking into applications where you can subdivide

specific operations within a single application into individual threads. Each of the threads

can run in parallel.

 The OS divides processing time not only among different applications, but also among each

thread within an application.

 Multithreading enables you to write in a way where multiple activities can proceed

concurrently in the same program.

O. S. ABDUL QADIR 77

Creating Threads

1. Create Thread by Implementing Runnable Interface:

If your class is intended to be executed as a thread then you can achieve this by implementing

Runnable interface.

You will need to follow three basic steps:

Step 1:

As a first step you need to implement a run method provided by Runnable interface.

This method provides entry point for the thread and you will put you complete business logic

inside this method. Following is simple syntax of run method:

public void run()

Step 2:

At second step you will instantiate a Thread object using the following constructor:

Thread(Runnable threadObj, String threadName);

- Where, threadObj is an instance of a class that implements the Runnable interface

and threadName is the name given to the new thread.

Step 3

Once Thread object is created, you can start it by calling start method, which executes a call to

run method. Following is simple syntax of start method:

void start();

Example:

Here is an example that creates a new thread and starts it running:

class RunnableDemo implements Runnable

{

private Thread t; private String threadName;

RunnableDemo(String name)

{

threadName = name;

System.out.println("Creating " + threadName);

}

public void run()

{

System.out.println("Running " + threadName);

try

{

for(int i = 4; i > 0; i--)

{

System.out.println("Thread: " + threadName + ", " + i);

Thread.sleep(50); // Let the thread sleep for a while.

}

}

catch (InterruptedException e)

{

System.out.println("Thread " + threadName + " interrupted.");

O. S. ABDUL QADIR 78

}

System.out.println("Thread " + threadName + " exiting.");

}

public void start ()

{

System.out.println("Starting " + threadName);

if (t == null)

{

t = new Thread (this, threadName);

t.start ();

}

}

}

public class TestThread

{

public static void main(String args[])

{

RunnableDemo R1 = new RunnableDemo("Thread-1");

R1.start();

RunnableDemo R2 = new RunnableDemo("Thread-2");

R2.start();

}

}

2. Create Thread by Extending Thread Class:

The second way to create a thread is to create a new class that extends Thread class using the

following two simple steps. This approach provides more flexibility in handling multiple

threads created using available methods in Thread class.

Step 1

You will need to override run method available in Thread class. This method provides entry

point for the thread and you will put you complete business logic inside this method. Following

is simple syntax of run method:

public void run()

Step 2

Once Thread object is created, you can start it by calling start method, which executes a call to

run method. Following is simple syntax of start method:

void start();

Example:

Here is the preceding program rewritten to extend Thread:

class ThreadDemo extends Thread

{

private Thread t;

private String threadName;

O. S. ABDUL QADIR 79

ThreadDemo(String name)

{

threadName = name;

System.out.println("Creating " + threadName);

}

public void run()

{

System.out.println("Running " + threadName);

try

{

for(int i = 4; i > 0; i--)

{

System.out.println("Thread: " + threadName + ", " + i);

// Let the thread sleep for a while.

Thread.sleep(50);

}

}

catch (InterruptedException e)

{

System.out.println("Thread " + threadName + " interrupted.");

}

System.out.println("Thread " + threadName + " exiting.");

}

public void start ()

{

System.out.println("Starting " + threadName);

if (t == null)

{

t = new Thread (this, threadName);

t.start ();

}

}

}

public class TestThread

{

public static void main(String args[])

{

ThreadDemo T1 = new ThreadDemo("Thread-1");

T1.start();

ThreadDemo T2 = new ThreadDemo("Thread-2");

T2.start();

}

}

O. S. ABDUL QADIR 80

Thread Life Cycle

A thread goes through various stages in its life cycle. For example, a thread is born, started,

runs, and then dies. Following diagram shows complete life cycle of a thread.

Above-mentioned stages are explained here:

1. New: A new thread begins its life cycle in the new state. It remains in this state until the

program starts the thread. It is also referred to as a born thread.

2. Runnable: After a newly born thread is started, the thread becomes runnable. A thread in

this state is considered to be executing its task.

3. Waiting: Sometimes, a thread transitions to the waiting state while the thread waits for

another thread to perform a task.A thread transitions back to the runnable state only when

another thread signals the waiting thread to continue executing.

4. Timed waiting: A runnable thread can enter the timed waiting state for a specified interval

of time. A thread in this state transitions back to the runnable state when that time interval

expires or when the event it is waiting for occurs.

5. Terminated Dead: A runnable thread enters the terminated state when it completes its task

or otherwise terminates.

Thread Methods:

Following is the list of important methods available in the Thread class.

S.

No
Methods Description

1 public void start
Starts the thread in a separate path of execution,

then invokes the run method on this Thread object.

2 public void run

If this Thread object was instantiated using a

separate Runnable target, the run method is

invoked on that Runnable object.

3 public final void setNameStringname
Changes the name of the Thread object. There is

also a getName method for retrieving the name.

4 public final void setPriorityintpriority
Sets the priority of this Thread object. The possible

values are between 1 and 10.

5 public final void setDaemonbooleanon
A parameter of true denotes this Thread as a

daemon thread.

O. S. ABDUL QADIR 81

6 public final void joinlongmillisec

The current thread invokes this method on a second

thread, causing the current thread to block until the

second thread terminates or the specified number of

milliseconds passes.

7 public void interrupt
Interrupts this thread, causing it to continue

execution if it was blocked for any reason.

8 public final boolean isAlive

Returns true if the thread is alive, which is any time

after the thread has been started but before it runs

to completion.

Thread Priorities

 Every Java thread has a priority that helps the operating system determine the order in

which threads are scheduled.

 Java thread priorities are in the range between MIN_PRIORITY a constant of 1 and

MAX_PRIORITY a constant of 10. By default, every thread is given priority

NORM_PRIORITY a constant of 5.

 Threads with higher priority are more important to a program and should be allocated

processor time before lower-priority threads. However, thread priorities cannot guarantee

the order in which threads execute and very much platform dependent.

Thread Scheduling

 Threads run one at a time in such a way as to provide an illusion of concurrency.

 Execution of multiple threads on a single CPU in some order is called scheduling.

 The Java runtime environment supports a very simple, deterministic scheduling algorithm

called fixed-priority scheduling.

 This algorithm schedules threads on the basis of their priority relative to other Runnable

threads.

 When a thread is created, it inherits its priority from the thread that created it. You also can

modify a thread's priority at any time after its creation by using the setPriority method.

 Thread priorities are integers ranging between MIN_PRIORITY and MAX_PRIORITY

(constants defined in the Thread class). The higher the integer, the higher the priority.

 At any given time, when multiple threads are ready to be executed, the runtime system

chooses for execution the Runnable thread that has the highest priority. Only when that

thread stops, yields, or becomes Not Runnable will a lower-priority thread start executing.

 If two threads of the same priority are waiting for the CPU, the scheduler arbitrarily chooses

one of them to run.

The chosen thread runs until one of the following conditions is true:

1. A higher priority thread becomes runnable.

2. It yields, or its run method exits.

3. On systems that support time-slicing, its time allotment has expired.

Then the second thread is given a chance to run, and so on, until the interpreter exits.

O. S. ABDUL QADIR 82

UNIT IV
FILES AND I / O STREAMS
 A flow of data is often referred to as a data stream. A stream is an ordered sequence of

bytes that has a SOURCE (input stream) or a DESTINATION (output stream).
 A stream is a logical device that represents flow of a sequence of characters.

A stream can be associated with a file, an Internet resource, to a pipe of a memory buffer.

Java I/O
 Input and Output is used to process the input and produce the output.
 A stream is a sequence of data. In Java, a stream is composed of bytes.
 Java uses the concept of a stream to make I/O operation fast. The java.io package contains

all the classes required for input and output operations.
 In general, streams are classified into two types known as Character streams and the byte

streams. The java.io package provides two sets of class hierarchies to handle character and
byte streams for reading and writing.
1. InputStream and OutputStream classes are operated on bytes for reading and writing.
2. Classes Reader and Writer are operated on characters for reading and writing.

 There are two other classes that are useful for handling input and output.
1. File class and
2. RandomAccessFile class.

Character streams
 Reader and Writer classes are used to read/write the 16-bit characters input and output

stream. However, it is an abstract class and can't be instantiated, but there are various
subclasses that inherit these classes and override the methods of it. Methods of these classes
throw an IOException. All the methods in the Writer class havae return type void.

 They are normally divided into two types. (i) Those that only read from or on write on to
streams and (ii) those that also process the data that was read/written.

Description of the four classes in the package java.io.

Name of class Description

Reader, Writer
Supports read/write 16-bit Unicode characters. Used
for only text data.

InputStream, OutputStream
Define basic methods for I/O streams of data. These
classes are used only for binary data

File
Enables creating, deleting and renaming files,
navigating through the file system, testing file
existence and finding information about files.

RandomAccessFile

Enables the program to read/write from/to any location
in the file, not just the beginning/end of the file, is the
case as in the usual sequential access. The file works
as a random-access disk file

O. S. ABDUL QADIR 83

Figure shows Reader and Writer class hierarchy

Various Reader and Writer classes and their description

Class Name Description

BufferedReader This class provides methods to read characters from the buffer.

BufferedWriter This class provides methods to write characters to the buffer.

CharArrayReader This class provides methods to read characters from the char array.

CharArrayWriter
This class provides methods to write the characters to the character
array.

FileReader This class provides methods to read characters from the file.

FileWriter This class provides methods to write characters to the file.

FilterReader
This class provides methods to read characters from the underlying
character input stream.

O. S. ABDUL QADIR 84

FilterWriter
This class provides methods to read characters from the underlying
character output stream.

InputStreamReader This class provides methods to convert bytes to characters.

OutpuStreamWriter This class provides methods to convert from bytes to characters.

PipedReader
This class provides methods to read characters from the connected
piped output stream.

PipedWriter
This class provides methods to write the characters to the piped output
stream.

StringReader This class provides methods to read characters from a string.

StringWriter This class provides methods to write the characters to the string.

Example: Writer and FileWriter

import java.io.*;
public class WriterExample
{
 public static void main(String[] args)

{
 try

 {
 Writer w = new FileWriter("file.txt");
 String content = "I love my country";
 w.write(content);

 w.close();
 System.out.println("Done");
}
catch (IOException e)
{

 e.printStackTrace();
 }
 }
}
OUTPUT

The above program write the statement “I Love my country” into the
“file.txt” file.

Example: Reader and FileReader

import java.io.*;
public class ReaderExample
 public static void main(String[] args)

{
 try
 {
 Reader reader = new FileReader("file.txt");
 int data = reader.read();
 while (data != -1)

O. S. ABDUL QADIR 85

{
 System.out.print((char) data);
 data = reader.read();
 }

 reader.close();
 }

catch (Exception ex)
{
 System.out.println(ex.getMessage());
}

 }
}
OUTPUT

The above program read the file “file.txt” and prints the statement “I Love my
country”

Byte Streams
 Java Byte streams are used to perform input and output of 8-bit bytes.
 The InputStream and OutputStream classes (abstract) are the super classes of all the

input/output stream classes: classes that are used to read/write a stream of bytes.

Figure shows InputStream and OutputStream class hierarchy

O. S. ABDUL QADIR 86

Example: FileOutputStream Class
import java.io.FileOutputStream;
public class FileOutputStreamExample
{

public static void main(String args[])
{

 try
{
 FileOutputStream fout=new

FileOutputStream("D:\\testout.txt");
 String s="Welcome to JAVA";
 byte b[]=s.getBytes();//converting string into byte array
 fout.write(b);
 fout.close();
 System.out.println("Program is executed successfully...");

 }
catch(Exception e)
{

System.out.println(e);
}

 }
}

OUTPUT:
Program is executed successfully...
The content of a text file testout.txt is set with the data Welcome to JAVA

Example: FileInputStream Class
import java.io.FileInputStream;
public class DataStreamExample
{
 public static void main(String args[])

{
 try

{
 FileInputStream fin=new FileInputStream("D:\\testout.txt");
 int i=fin.read(); //int i=0;
 System.out.print((char)i); //while((i=fin.read())!=-1){
 //System.out.print((char)i);}

fin.close();
 }

catch(Exception e){System.out.println(e);}
 }
}

OUTPUT:
Welcome to JAVA

NOTE: Before running the code, a text file named as "testout.txt" is required to be created.

O. S. ABDUL QADIR 87

FilterStream Class
 Java FilterOutputStream class implements the OutputStream class. It provides different sub

classes such as BufferedOutputStream and DataOutputStream to provide additional
functionality.

 Java FilterInputStream class implements the InputStream. It contains different sub classes
as BufferedInputStream, DataInputStream for providing additional functionality.

Example: FilterInputStream Class

import java.io.*;
public class FilterExample
{
 public static void main(String[] args) throws IOException

{
 File data = new File("D:\\testout.txt");
 FileInputStream file = new FileInputStream(data);
 FilterInputStream filter = new BufferedInputStream(file);
 int k =0;
 while((k=filter.read())!=-1)

{
 System.out.print((char)k);
 }
 file.close(); filter.close();
 }
}
Here, we are assuming that you have following data in "testout.txt" file:

OUTPUT:
Welcome to JAVA

Example: FilterOutputStream Class
import java.io.*;
public class FilterExample
{
 public static void main(String[] args) throws IOException

{
 File data = new File("D:\\testout.txt");
 FileOutputStream file = new FileOutputStream(data);
 FilterOutputStream filter = new FilterOutputStream(file);
 String s="Welcome to Jamal Mohamed College.";
 byte b[]=s.getBytes();

 filter.write(b);
 filter.flush(); filter.close(); file.close();

 System.out.println("Program is executed successfully....");
 }
}

OUTPUT:
Program is executed successfully...

O. S. ABDUL QADIR 88

RANDOM ACCESS FILE
 This class is used for reading and writing to random access file.
 A random access file behaves like a large array of bytes. There is a cursor implied to the

array called file pointer, by moving the cursor we do the read write operations.
 If end-of-file is reached before the desired number of byte has been read than

EOFException is thrown. It is a type of IOException.

Constructor

Constructor Description

RandomAccessFile(File file,
String mode)

Creates a random access file stream to read from,
and optionally to write to, the file specified by
the File argument.

RandomAccessFile(String name,
String mode)

Creates a random access file stream to read from,
and optionally to write to, a file with the
specified name.

Example
// Java Program illustrating use of io.RandomAccessFile class methods
// read(), read(byte[] b), readBoolean(), readByte(), readInt()
// readFully(byte[] b, int off, int len), readFully(), readFloat()
// readChar(), readDouble(),
 import java.io.*;
public class NewClass
{
 public static void main(String[] args)
 {
 try
 {

 double d = 1.5;
 float f = 14.56f;

 // Creating a new RandomAccessFile - "testout"
 RandomAccessFile RAF = new RandomAccessFile("testout.txt", "rw");

 // Writing to file
 RAF.writeUTF("I Love my Country");

 // File Pointer at index position - 0
 RAF.seek(0);

 // read() method :
 System.out.println("Use of read() method : " + RAF.read());
 RAF.seek(0);
 byte[] b = {1, 2, 3};

 // Use of .read(byte[] b) method :

O. S. ABDUL QADIR 89

 System.out.println("Use of .read(byte[] b) : " + RAF.read(b));

 // readBoolean() method :
 System.out.println("Use of readBoolean() : " + RAF.readBoolean());

 // readByte() method :

 System.out.println("Use of readByte() : " + RAF.readByte());
 RAF.writeChar('c');
 RAF.seek(0);

 // readChar() :
 System.out.println("Use of readChar() : " + RAF.readChar());
 RAF.seek(0);
 RAF.writeDouble(d);
 RAF.seek(0);

 // read double
 System.out.println("Use of readDouble() : " + RAF.readDouble());
 RAF.seek(0);
 RAF.writeFloat(f);
 RAF.seek(0);

 // readFloat() :
 System.out.println("Use of readFloat() : " + RAF.readFloat());
 RAF.seek(0);

 // Create array upto RAF.length

 byte[] arr = new byte[(int) RAF.length()];
 // readFully() :
 RAF.readFully(arr);
 String str1 = new String(arr);
 System.out.println("Use of readFully() : " + str1);
 RAF.seek(0);

 // readFully(byte[] b, int off, int len) :
 RAF.readFully(arr, 0, 8);
 String str2 = new String(arr);
 System.out.println("Use of readFully(byte[] b, int off, int len) : " + str2);
 }
 catch (IOException ex)
 {
 System.out.println("Something went Wrong");
 ex.printStackTrace();
 }
 }
}

O. S. ABDUL QADIR 90

OUTPUT
Use of read() method : 0
Use of .read(byte[] b) : 3
Use of readBoolean() : true
Use of readByte() : 108
Use of readChar() : c

Use of readDouble() : 1.5
Use of readFloat() : 14.56
Use of readFully() : I Love my Country
Use of readFully(byte[] b, int off, int len) : I Love my Country

SERIALIZATION and DESERIALIZATOIN
1. Serialization
 Serialization in Java is a mechanism of writing the state of an object into a byte-

stream.
 The serialization is platform-independent, it means you can serialize an object on one

platform.
 For serializing the object, we call the writeObject() method of ObjectOutputStream

class.

Advantages of Java Serialization
It is mainly used to travel object's state on the network (that is known as marshalling).

Serializable Interface

 Serializable is a marker interface (has no data member and method). It is used to
"mark" Java classes so that the objects of these classes may get a certain capability.

 The Serializable interface must be implemented by the class whose object needs to

be persisted.
 The String class and all the wrapper classes implement the java.io.Serializable

interface by default.

Example: Serialization
//Student class implements Serializable interface. Its objects can be converted into
stream.

import java.io.Serializable;
public class Student implements Serializable
{

int id;
 String name;
 public Student(int id, String name)

{
 this.id = id;
 this.name = name;
 }
}

//The main class (Persist) serialize the object of Student class from above code.

O. S. ABDUL QADIR 91

//The writeObject() method of ObjectOutputStream class provides the functionality to
serialize the object.

import java.io.*;
class Persist
{

public static void main(String args[])

{
 try

 {
 //Creating the object

 Student s1 =new Student(211,"ravi");

//Creating stream and writing the object
 FileOutputStream fout=new FileOutputStream("f.txt");
 ObjectOutputStream out=new ObjectOutputStream(fout);
 out.writeObject(s1);
 out.flush();

 //closing the stream
 out.close();
 System.out.println("Program is executed Successfully…");

 }
 catch(Exception e)
 {

System.out.println(e);
 }

 }
}

The above program saving the state of the object in the file named f.txt.

 OUTPUT
 Program is executed Successfully…

2. Deserialization
 Deserialization is the process of reconstructing the object from the serialized state.
 The reverse operation of serialization is called deserialization where byte-stream is

converted into an object.
 Deserialization process is platform-independent, it means you can deserialize it on a

different platform.
 For deserialization we call the readObject() method of ObjectInputStream class.

Example

//An example where we are reading the data from a deserialized object

import java.io.*;

class Depersist

{

public static void main(String args[])

O. S. ABDUL QADIR 92

{

try

{

//Creating stream to read the object

ObjectInputStream in=new ObjectInputStream (new FileInputStream

("f.txt"));

 Student s=(Student)in.readObject();

 System.out.println(s.id+" "+s.name);

 in.close(); //closing the stream

 }

 catch(Exception e)

 {

System.out.println(e);

 }

 }

}

Applets
 An applet is a software component that enables client-side programming and facilitates

text, graphics, audio, imaging, animation and networking, besides live updating and

securing two-way interaction in web pages.

 An applet is a Java program that runs in a Web browser. It runs inside the web browser and

works at client side.

 An applet is embedded in an HTML page using the APPLET or OBJECT tag and hosted

on a web server.

Java Application Versus Java Applet
Java Application Java Applet

Applications are just like a Java
programs that can be execute
independently without using the web
browser.

Applets are small Java programs that are
designed to be included with the HTML web
document. They require a Java-enabled web
browser for execution.

Application program requires a main
function for its execution.

Applet does not require a main function for its
execution.

Java application programs have the full
access to the local file system and
network.

Applets don’t have local disk and network
access.

Applications can access all kinds of
resources available on the system.

Applets can only access the browser specific
services. They don’t have access to the local
system.

Applications can executes the programs
from the local system.

Applets cannot execute programs from the local
machine.

An application program is needed to
perform some task directly for the user.

An applet program is needed to perform small
tasks or the part of it.

O. S. ABDUL QADIR 93

Life Cycle of an Applet

The java.applet.Applet class 4 life cycle methods and java.awt.Component class provides 1 life

cycle methods for an applet.

It is important to understand the order in which the various methods shown in the above image

are called.

 When an applet begins, the following methods are called, in this sequence

1. init()

2. start()

3. paint()

 When an applet is terminated, the following sequence of method calls takes place

1. stop()

2. destroy()

1. init () :

init() method is used to initialize an applet. It is invoking only once at the time of

initialization. Initialized objects are created by the web browser. We can compare this

method with a Thread class born state.

2. start () :

start() method is used to start the applet. It is invoking after the init()method invoked.

It is invoking each time when browser loading or refreshing. Until init() method is

invoked start() method is inactive state.

3. paint () :

 The paint () method is called each time an AWT-based applet’s output must be

redrawn. This situation can occur for several reasons.

 paint () method is used for painting any shapes like square, rectangle, trapezium,

eclipse, etc. paint() method has parameter as ClassGraphics. This Graphics class

gives painting features in an applet.

 paint () is also called when the applet begins execution. Whatever the cause,

whenever the applet must redraw its output, paint() is called.

 paint () method has one parameter of type Graphics. This parameter will contain

the graphics context, which describes the graphics environment in which the

applet is running. This context is used whenever output to the applet is required.

O. S. ABDUL QADIR 94

Note: This is the only method among all the method mention above, which is

parametrised. Its prototype is

public void paint(Graphics g)

- where g is an object reference of class Graphic.

4. stop () :

 stop() method is used to stop the applet. It is invoked every time when browser

stopped or minimized or abrupt failure of the application.

 After stop() method called, we can also start() method whenever we want. This

method mainly deals with clean up code.

5. destroy () :

destroy() method is used to destroy the application once we have done with our applet

work. It is invoked only once. Once applet is destroyed we can’t start()the applet.

How does Applet Life-Cycle Works in Java?
1. Applet is a Java application that runs in any web browser and working at a client-side

window. As it is running in the browser so, it doesn’t have a main () method so Applet is
designed to be placed within an HTML page.

2. java.applet.Appletclass provides init(), start(), stop() and destroy() methods.

3. java.awt.Componentclass provides another method of paint().

4. In Java, if any class wants to become Applet Class, it must inherit the Applet class.

5. init() method

Syntax:
public void init()
{

//initialized objects
}

6. start() method

Syntax:
public void start()
{

//start the applet code
}

7. stop() method

Syntax:
public void stop()
{

//stop the applet code
}

O. S. ABDUL QADIR 95

8. destroy() method

Syntax:
public void destroy()
{

//destroy the applet code
}

9. paint() method

Syntax:
public void paint(Graphics graphics)
{

//any shapes code
}

10. All of the above methods are automatically called by the browser. We no need to call
explicitly. Even though each method has its own specification to full fill the requirement
as we discussed above.
The flow of the methods is given below.

Applet Life Cycle - Flow of the methods

11. Applet life cycle is managed by Java Plug-in software.

12. There are two standard ways in which you can run an applet:

a. Executing the applet within a Java-compatible web browser.

b. Using an applet viewer, such as the standard tool, applet-viewer. An applet viewer

executes your applet in a window. This is generally the fastest and easiest way to test

your applet.

O. S. ABDUL QADIR 96

Example: Life Cycle of Applet in Java

AppletLifeCycle.java

import java.applet.Applet;

import java.awt.Graphics;

import java.awt.*;

 /*<applet code="AppletLifeCycle.class" width="350" height="150"> </applet>*/

public class AppletLifeCycle extends Applet

{

public void init()

{

setBackground(Color.CYAN);

System.out.println("init() called");

}

public void start()

{

System.out.println("Start() called");

}

public void paint(Graphics g)

{

System.out.println("Paint(() called");

}

public void stop()

{

System.out.println("Stop() Called");

}

public void destroy()

{

System.out.println("Destroy)() Called");

}

}

O. S. ABDUL QADIR 97

Example of an Applet

import java.applet.*;

import java.awt.*;

public class MyApplet extends Applet

{

int height, width;

public void init()

{

height = getSize().height;

width = getSize().width;

setName("MyApplet");

 }

public void paint(Graphics g)

{

g.drawRoundRect(10, 30, 120, 120, 2, 3);

}

}

How to run an Applet Program

In the same manner as you compiled your console programs, an Applet program is compiled.

There are, however, two methods of running an applet.

 Running the Applet in a web browser compatible with Java.

 Use an applet viewer, like the normal instrument, to view applets. In a window, an

applet viewer runs your applet.

Create brief HTML file in the same folder to execute an Applet in a web browser. Include the

following code in the file's body tag. (Applet tag loads class Applet).

< applet code = "MyApplet" width=400 height=400 >

< /applet >

Run the HTML file HTML file

O. S. ABDUL QADIR 98

Running Applet using Applet Viewer

Write a brief HTML file as mentioned above to run an Applet with an applet viewer. If you

name it as run.htm, your applet program will operate the following command.

f:/>appletviewer run.htm

Parameter in Applet

We can get any information from the HTML file as a parameter. For this purpose, Applet

class provides a method named getParameter().

Syntax:

public String getParameter(String parameterName)

Example:

UseParam.java

import java.applet.Applet;

import java.awt.Graphics;

public class UseParam extends Applet

{

public void paint(Graphics g)

{

String str=getParameter("msg");

g.drawString(str,50, 50);

}

}

myapplet.html

<html>

<body>

<applet code="UseParam.class" width="300" height="300">

O. S. ABDUL QADIR 99

<param name="msg" value="Welcome to applet">

</applet>

</body>

</html>

Example:

GraphicsDemo.java

import java.applet.Applet;

import java.awt.*;

public class GraphicsDemo extends Applet

{

public void paint(Graphics g)

{

g.setColor(Color.red);

g.drawString("Welcome",50, 50);

g.drawLine(20,30,20,300);

g.drawRect(70,100,30,30);

g.fillRect(170,100,30,30);

g.drawOval(70,200,30,30);

 g.setColor(Color.pink);

g.fillOval(170,200,30,30);

g.drawArc(90,150,30,30,30,270);

g.fillArc(270,150,30,30,0,180);

 }

}

myapplet.html

<html>

<body>

<applet code="GraphicsDemo.class" width="300" height="300">

</applet>

</body>

</html>

O. S. ABDUL QADIR 100

UNIT V
Abstract Window Toolkit (AWT)

 Abstract Window Toolkit (AWT) is a set of application program interfaces (APIs) used
by Java programmers to create graphical user interface (GUI) objects, such as buttons,
scroll bars, and windows.

 The Abstract Window Toolkit (AWT) is Java's original platform-independent

windowing, graphics, and user-interface widget toolkit.
 The AWT is part of the Java Foundation Classes (JFC) — the standard API for

providing a graphical user interface (GUI) for a Java program. AWT is also the GUI
toolkit for a number of Java ME profiles

AWT CLASS HIERARCHY
Component

 Java.awt package contain all GUI Components
 Component is the superclass of most of the displayable classes defined within the AWT.

Note: it is abstract.
 MenuComponent is another class which is similar to Component except it is the

superclass for all GUI items which can be displayed within a drop-down menu.
 The Component class defines data and methods which are relevant to all Components

 setBounds

 setSize

 setLocation

 setFont

 setEnabled

 setVisible

 setForeground

 coloursetBackground -- colour

O. S. ABDUL QADIR 101

 The Component class contains the common features to all items which can be displayed
in a GUI. Often, these items are called “widgets”.

 In the AWT, all widgets are components and, as such, inherit all the data and methods
of the Component class.

AWT Controls

Container
 Container is a subclass of Component. (ie. All containers are themselves, Components)

Containers contain components. For a component to be placed on the screen, it must be
placed within a Container.

 The Container class defined all the data and methods necessary for managing groups of
Components:

 add

 getComponent

 getMaximumSize

 getMinimumSize

 getPreferredSize

 remove

 removeAll
 The Container class is an abstract class which encapsulates the logic for managing

Components.

WINDOWS AND FRAMES
 Generally speaking, the Window class is not used very often. The Frame class, on the

other hand, is used quite extensively for GUI based applications.
 Another subclass of Window, which is not described here, I the Dialog class. It is used

to display Dialog Boxes.
 Dialog Boxes are generally used to convey important information to the user, and must

be dismissed by the user before the application can continue.
 It should be noted that dialog boxes disrupt the flow of an application and can cause

great user frustration if not used appropriately.
 The Window class defines a top-level Window with no Borders or Menu bar.
 Usually used for application splash screens.

 Frame defines a top-level Window with Borders and a Menu Bar

 Frames are more commonly used than Windows Once defined, a Frame is a
Container which can contain Components

Frame aFrame = new Frame(“Hello World”);
aFrame.setSize(100,100);
aFrame.setLocation(10,10);
aFrame.setVisible(true);

Panels
 The Panel class is probably the most important class within the AWT.
 Panels can contain Components (which includes other Panels).
 It allows the GUI screen to be partitioned into manageable pieces.

O. S. ABDUL QADIR 102

 Panels should contain Components which are functionally related. For example, if an
application wished to allow the user to input their name, address, phone number and
other relevant contact information, it would be good design to place all of the necessary
GUI Components on a Panel.

 That panel can be then added to and removed from other Containers within the
application.

Panel aPanel = new Panel();
aPanel.add(new Button("Ok"));
aPanel.add(new Button("Cancel"));
Frame aFrame = new Frame("Button Test");
aFrame.setSize(100,100);
aFrame.setLocation(10,10);
aFrame.add(aPanel);

Buttons
 All GUI systems offer some form of push button. The Button class in Java represents that

functionality.
 Buttons are typically single purpose (i.e. their function does not change).
 When a button is pressed, it notifies its Listeners.
 To be a Listener for a button, an object must implement the ActionListener Interface.

Panel aPanel = new Panel();
Button okButton = new Button("Ok");
Button cancelButton = new Button("Cancel");
aPanel.add(okButton)); aPanel.add(cancelButton));
okButton.addActionListener(controller2);
cancelButton.addActionListener(controller1);

Example: Implementatio of Panel and Buttons

 import java.awt.*;
public class PanelButton
{

PanelButton()
 {

 Frame f= new Frame("Panel Example");
 Panel panel=new Panel();
 panel.setBounds(40,80,200,200);
 panel.setBackground(Color.gray);

Button b1=new Button("Button 1");

 b1.setBounds(50,100,80,30);
 b1.setBackground(Color.yellow);

 Button b2=new Button("Button 2");
 b2.setBounds(100,100,80,30);
 b2.setBackground(Color.green);

O. S. ABDUL QADIR 103

panel.add(b1); panel.add(b2);
 f.add(panel);
 f.setSize(400,400);
 f.setLayout(null);
 f.setVisible(true);
 }

 public static void main(String args[])
 {
 new PanelButton();
 }

}

OUTPUT

Labels
 This class is a Component which displays a single line of text.

 Labels are read-only.
 That is, the user cannot click on a label to edit the text it displays.
 Text can be aligned within the label

Label aLabel = new Label("Enter password:");
aLabel.setAlignment(Label.RIGHT);
aPanel.add(aLabel);

List
 The List class comes under many names in different GUI systems.
 Lists provide a list of strings which can be selected by the user.
 The programmer may allow the user to select multiple strings within the list.

 This class is a Component which displays a list of Strings.
 The list is scrollable, if necessary.
 Sometimes called Listbox in other languages.
 Lists can be set up to allow single or multiple selections.

O. S. ABDUL QADIR 104

 The list will return an array indicating which Strings are selected
List aList = new List();
aList.add("Calgary");
aList.add("Edmonton");
aList.add("Regina");
aList.add("Vancouver");

aList.setMultipleMode(true);

Example: Implementation of Label and List
import java.awt.*;
class LabelList extends Frame
{
 LabelList()
 {
 Label firstName = new Label("First Name");
 firstName.setBounds(20, 50, 80, 20);

 Label lastName = new Label("Last Name");
 lastName.setBounds(20, 80, 80, 20);

 TextField firstNameTF = new TextField();
 firstNameTF.setBounds(120, 50, 100, 20);

 TextField lastNameTF = new TextField();
 lastNameTF.setBounds(120, 80, 100, 20);

 Label SelItems = new Label("Select Degree");
 SelItems.setBounds(20, 110, 80, 20);

List l1=new List(4);

 l1.setBounds(120,110, 75,65);
 l1.add("BCA");
 l1.add("B.SC CS");
 l1.add("B.Sc IT");
 l1.add("MCA");

 add(firstName); add(lastName);
 add(firstNameTF); add(lastNameTF);
 add(SelItems); add(l1);
 setSize(300,300); setLayout(null);

setVisible(true);
}
public static void main(String[] args)
{

LabelList awt = new LabelList();
}

}

O. S. ABDUL QADIR 105

OUTPUT

Drawing with Graphics Class

import java.awt.*;
import java.awt.event.*;

import java.awt.geom.*;

class AWTGraphicsDemo extends Frame
{

 public AWTGraphicsDemo()
 {
 super("Java AWT Examples");
 prepareGUI();
 }

 public static void main(String[] args)
 {
 AWTGraphicsDemo awtGraphicsDemo = new AWTGraphicsDemo();
 awtGraphicsDemo.setVisible(true);
 }

 private void prepareGUI()
 {
 setSize(400,400);
 addWindowListener(new WindowAdapter()
 {
 public void windowClosing(WindowEvent windowEvent)
 {
 System.exit(0);
 }
 });
 }

O. S. ABDUL QADIR 106

 @Override
 public void paint(Graphics g)
 {
 Graphics2D g2 = (Graphics2D)g;
 Font font = new Font("Times New Roman", Font.PLAIN, 24);
 g2.setFont(font);

 g2.drawString("Welcome to Jamal Mohamed College", 10, 110);
 g2.drawString("Department of Computer Applications", 10, 160);
 }
}

OUTPUT:

EVENT HANDLING

 Event Handling is the mechanism that controls the event and decides what should
happen if an event occurs.

 This mechanism have the code which is known as event handler that is executed when
an event occurs.

 Java Uses the Delegation Event Model to handle the events. This model defines the
standard mechanism to generate and handle the events.Let's have a brief introduction
to this model.

The Delegation Event Model has the following key participants namely:
1. Source - The source is an object on which event occurs. Source is responsible for

providing information of the occurred event to its handler. Java provide as with
classes for source object.

O. S. ABDUL QADIR 107

2. Listener - It is also known as event handler. Listener is responsible for generating
response to an event. From java implementation point of view the listener is also an
object. Listener waits until it receives an event. Once the event is received, the
listener process the event and then returns.

 The benefit of this approach is that the user interface logic is completely separated from
the logic that generates the event. The user interface element is able to delegate the

processing of an event to the separate piece of code. In this model, Listener needs to be
registered with the source object so that the listener can receive the event notification.
This is an efficient way of handling the event because the event notifications are sent
only to those listener that want to receive them.

Steps Involved In Event Handling
 The User clicks the button and the event is generated.
 Now the object of concerned event class is created automatically and information about

the source and the event get populated with in same object.
 Event object is forwarded to the method of registered listener class. The method is now

get executed and returns.

Callback Methods
 These are the methods that are provided by API provider and are defined by the

application programmer and invoked by the application developer. Here the callback
methods represents an event method. In response to an event java jre will fire callback
method. All such callback methods are provided in listener interfaces.

 If a component wants some listener will listen to its events the source must register
itself to the listener.

Event Handling Example
import java.awt.*;
import java.awt.event.*;

import java.applet.*;
import java.applet.*;
import java.awt.event.*;
import java.awt.*;
public class Test extends Applet implements KeyListener
{

String msg="";
public void init()
{
 addKeyListener(this);
}
public void keyPressed(KeyEvent k)
{
 showStatus("KeyPressed");
}
public void keyReleased(KeyEvent k)
{
 showStatus("KeyRealesed");
}

O. S. ABDUL QADIR 108

public void keyTyped(KeyEvent k)
{
 msg = msg+k.getKeyChar();
 repaint();
}
public void paint(Graphics g)

{
 g.drawString(msg, 20, 40);
}

}

HTML code:
<applet code="Test" width=300, height=100>
</applet>

Layouts
Layout means the arrangement of components within the container.
In other way we can say that placing the components at a particular position within the

container. The task of layouting the controls is done automatically by the Layout Manager.

LAYOUT MANAGER
The LayoutManagers are used to arrange components in a particular manner. LayoutManager
is an interface that is implemented by all the classes of layout managers. There are following
classes that represents the layout managers:

1. java.awt.BorderLayout
2. java.awt.FlowLayout
3. java.awt.GridLayout
4. java.awt.CardLayout
5. java.awt.GridBagLayout
6. javax.swing.BoxLayout
7. javax.swing.GroupLayout
8. javax.swing.ScrollPaneLayout
9. javax.swing.SpringLayout etc.

AWT Layout Manager Classes:
Following is the list of commonly used controls while designed GUI using AWT.

O. S. ABDUL QADIR 109

BorderLayout
The borderlayout arranges the components to fit in the five regions: east, west, north, south
and center. The BorderLayout provides five constants for each region:

1. public static final int NORTH
2. public static final int SOUTH
3. public static final int EAST

4. public static final int WEST
5. public static final int CENTER

Example
import java.awt.*;
import javax.swing.*;
public class Border
{

JFrame f;
Border()
{
 f=new JFrame();

 JButton b1=new JButton("NORTH");
 JButton b2=new JButton("SOUTH");
 JButton b3=new JButton("EAST");
 JButton b4=new JButton("WEST");
 JButton b5=new JButton("CENTER");

 f.add(b1,BorderLayout.NORTH); f.add(b2,BorderLayout.SOUTH);
 f.add(b3,BorderLayout.EAST); f.add(b4,BorderLayout.WEST);
 f.add(b5,BorderLayout.CENTER);

 f.setSize(300,300);

 f.setVisible(true);
}
public static void main(String[] args)
{
 new Border();
}

}

OUTPUT

O. S. ABDUL QADIR 110

GridLayout
The GridLayout manages the components in form of a rectangular grid.

Example
import java.awt.*;
class griddemo extends Frame
{

 Button b1, b2, b3, b4, b5;
 griddemo()
 {
 setSize(400,400);
 setTitle("GridLayout Program....");
 setVisible(true);
 setLocation(200,150);
 setLayout(new GridLayout(3,2,10,20));
 b1 = new Button("ONE");
 b2 = new Button("TWO");
 b3 = new Button("THREE");
 b4 = new Button("FOUR");
 b5 = new Button("FIVE");

add(b1);
 add(b2);
 add(b3);
 add(b4);
 add(b5);
 }
 public static void main(String a[])
 {
 new griddemo();
 }
}

OUTPUT

O. S. ABDUL QADIR 111

FlowLayout
The FlowLayout is the default layout.It layouts the components in a directional flow.
Example

import java.awt.*;
class flowdemo extends Frame
{
 Button b1, b2, b3;
 flowdemo()
 {
 setSize(400,400);
 setTitle("FlowLayout Program....");
 setVisible(true);
 setLocation(300,150);
 setLayout(new FlowLayout());
 Font f = new Font("Algerian",Font.BOLD,18);
 Color c1 = new Color(155,200,155);
 Color c2 = new Color(255,100,255);
 Color c3 = new Color(155,10,55);

b1 = new Button("JAMAL");
 b2 = new Button("MOHAMED");
 b3 = new Button("COLLEGE");

 b1.setFont(f); b2.setFont(f); b3.setFont(f);

 b1.setBackground(c1); b2.setBackground(c2);
 b3.setBackground(c3);

 add(b1); add(b2); add(b3);
 }
 public static void main(String a[])
 {
 new flowdemo();
 }
}
OUTPUT

