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Chapter 1

Impact of Elastic Bodies and Motion of
Projectile

Impact of Elastic Bodies

The colliding of two bodies aganinstg each other, or impinging of one body on another , is known as
impact. Although the duration of impact is very small, it results in a change in the magnitude and
even direction of the velocities of the colliding bodies.

1.1 Impuse of a force

Consider a constant force F which acts for a time t on a body of mass m, thus changing its velocity
from u to v. Because the force is constant, the body will travel with constant acceleration a where

F = ma

and at = v − u

hence,
F

m
t = v − u

or Ft = mv −mu

The product of constant forceF and time t for which it acts is called impulse(J) of the force and
this is equal to the change in linear momentum it produces.

Thus, J = Ft = ∆p = pf − pi (1.1.1)

Impulsive forces: Definition. An impulsive force is an infinitely great force acting for a very
short interval of time, such that their product is finite.Examples for some approximate impulsive
forces are

1. The blow of hammer on a pile

2. The force exerted by the bat on the cricket ball

Note: The force and the time cannot be measured because one is too great and the other is too
small. Nevertheless, their product, which is finite, is capable of measurement.
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1.2 Collision

In collision relatively large force acts on each colliding particle for a relatively short time. The force is
called impulsive force. The concept of collision has given much information regarding atoms, nucleus
and elementary particles. During the collision, the colliding object may be undergoing physical and
non physical contact.

Example of for physical contact collision is billiard ball’s collision.Example of non contact collision
is scattering of α-particle by atomic nucleus. During the collision relatively strong force acts on the
colliding particles and this force has created appreciable effect on the motion of the colliding particles
after the collision.

1.2.1 Elastic and Inelastic collision

There are two types of collision,

1. Elastic and

2. Inelastic

Elastic Collison
Elastic collisions are those in which the total kinetic energy before and after collision remains
unchanged. Collisions between atomic, nuclear and fundamental particles are the true elas-
tic collisions. Collision between ivory or glass balls can be treated as approximately elastic
collisions. In such a collision between particles, we have

m1u1 +m2u2 = m1v1 +m2v2

and
1

2
m1u

2
1 +

1

2
m2u

2
2 =

1

2
m1v

2
1 +

1

2
m2v

2
2

where m1 and m2 are the respective masses of the two particles and u1, u2 and v1, v2 are theirs
velocity before and after collisions.

Inelastic Collison
If the kinetic energy is not conserved, the collision is said to be inelastic. When two bodies
stick togetrher after collision, the collision is said to be completely inelastic.

1.2.2 Law’s of impact

Newton’s Experimental law of impact–coefficient of restitution
The ratio of relative velocity before and after collision is constant and is in opposite direction.
This constant is called coefficient of restitution

v1 − v2
u1 − u2

= −e

where, (u1 − u2) and (v1 − v2) are their relative velocities, before and after impact. e lies
between 0 and 1. if e=0, the bodies are called perfectly plastic bodies. if e=1, the bodies are
called perfectly elastic bodies.
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Motion of twao smooth bodies perpendicular to the line of impact
There is no change in velocity of a body in a direction perpendicular to the common normal
to the impact.

Principle of conservation of momentum
The total momentum of two bodies after impact along the common normal should be equal to
the total momentum before the impact along the same direction.

1.2.3 Direct and Oblique impact

Direct Impact: Two bodies are said to be impige directly when the direction of motion of each is
along he common normal at the point where they touch.
Oblique Impact: Two bodies are said to impinge obliquely, if the direction of motion of either or
both is along the common normal at the point of contact.
Note: The common normal at the point of contact is called line of impact. Thus in the case of two
spheres the line of impact is the line joining their centres.

1.3 Direct impact of two smooth spheres:

A smooth sphere of mass m1 moving with a velocity u1 impinges on another smooth sphere of mass
m2 moving in the same direction with velocity u2. If e is the coefficient of restitution between them,
fine the velocities of the sphere after impact.
Since the spheres are smooth, there is no impulsive force on either along the common tangent.

m1 m2

u1 v1 u2 v2

Figure 1.1: Direct collision of two smooth sphere

Hence in this direction their velocities after impact are the same as their original velocities. Let v1
and v2 be the velocities of the two spheres along the common normal after impact.

By the principle of conservation of momentum,

m1v1 +m2v2 = m1u1 +m2u2 (1.3.1)

By Newton’s experimental law,

v1 − v2 = −e(u1 − u2) (1.3.2)

multiplying equation (1.3.2) by m2 and adding to (1.3.1)

v1(m1 +m2) = m2u2(1 + e) + u1(m1 − em2)

v1 =
m2u2(1 + e) + u1(m1 − em2)

m1 +m2

(1.3.3)
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multiplying equation (1.3.2) by m1 and subtracting from equation (1.3.1)

v2(m1 +m2) = m1u1(1 + e) + u2(m2 − em1)

v2 =
m1u1(1 + e) + u2(m2 + em1)

m1 +m2

(1.3.4)

equation (1.3.3) and (1.3.4) give the velocities of the two sphere after impact.

Cor.1. The impulse of blow on the sphere of mass m1 =change in momentum produced in it.

m1(v1 − u1) =
m1m2(1 + e)(u2 − u1)

m1 +m2

Cor.2. If e=1 and m1 = m2 then v1 = u2 and v2 = u1. Thus, if two equal perfectly, elastic spheres
impinge directly, they interchange their velocities.

1.3.1 Loss of K.E due to direct impact of two smooth spheres

Let m1,m2 be the masses, u1 and u2, v1 and v2 their velocities before and after impact and e the
coefficient of restitution. Then, by the principle of conservation of linear momentum,

m1v1 +m2v2 = m1u1 +m2u2 (1.3.1)

By Newton’s experimental law,
v1 − v2 = −e(u1 − u2) (1.3.2)

Square equation (1.3.1),

(m1v1 +m2v2)
2 = (m1u1 +m2u2)

2

m2
1v

2
1 +m2

2v
2
2 + 2m1m2v1v2 = (m1u1 +m2u2)

2 (1.3.3)

Square equation (1.3.2) and multiply both sides by m1 and m2

m1m2(v1 − v2)
2 = e2m1m2(u1 − u2)

2

m1m2v
2
1 +m1m2v

2
2 − 2m1m2v1v2 = e2m1m2(u1 − u2)

2 (1.3.4)

adding equations (1.3.3) and (1.3.4), we get

m2
1v

2
1 +m2

2v
2
2 +((((((

2m1m2v1v2+m1m2v
2
1 +m1m2v

2
2 −((((((

2m1m2v1v2 = (m1u1+m2u2)
2+ e2m1m2(u1−u2)

2

Taking common term on LHS and add and subtract m1m2(u1 − u2)
2 on RHS

m1v
2
1(m1+m2)+m2v

2
2(m1+m2) = (m1u1+m2u2)

2+m1m2(u1−u2)
2+e2m1m2(u1−u2)

2−m1m2(u1−u2)
2

= m2
1u

2
1 +m2

2u
2
2 +(((((((

2m1m2u1u2 +m1m2u
2
1 +m1m2u

2
2 −(((((((

2m1m2u1u2 + e2m1m2(u1 − u2)
2 −m1m2(u1 − u2)

2

m1v
2
1(m1+m2)+m2v

2
2(m1+m2) = (m1+m2)m

2
1u

2
1+(m1+m2)m

2
2u

2
2+e2m1m2(u1−u2)

2−m1m2(u1−u2)
2

(1.3.5)
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divide the entire equation with m1 +m2 and multiply with
1

2

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1u

2
1 +

1

2
m2u

2
2 +

1

2
(e2 − 1)(u1 − u2)

2 m1m2

(m1 +m2)

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1u

2
1 +

1

2
m2u

2
2 −

1

2
(1− e2)(u1 − u2)

2 m1m2

(m1 +m2)
(1.3.6)

Now,
1

2
m1v

2
1 +

1

2
m2v

2
2 = K.E after impact

and,
1

2
m1u

2
1 +

1

2
m2u

2
2 = K.E before impact

Therefore the loss of Kinetic energy =
1

2

m1m2(u1 − u2)
2

m1 +m2

(1− e2) (1.3.7)

Note: When e=1, the loss of K.E is zero. In general e¡1 so that (1 − e2) is positive. Hence,
there is always a loss of K.E due to impact. The K.E loss during impact is converted into (i) sound,
(ii)heat or (iii) vibration or rotation of the colliding bodies.

when e=0, the loss in K.E =
1

2

m1m2(u1 − u2)
2

m1 +m2

1.4 Oblique impact of two smooth sphere

A smooth sphere of mass m1 moving with velocity u1 impinges obliquely on a smooth sphere of mass
m2 moving with velocity u2. If the direction of motion before impact make angles αandβ with the
common normal, find the velocities and direction of the spheres after impact

�

�

�
�

m1
m2

u1
u2

v1

v2

A B

Figure 1.2: Oblique collision of two smooth sphere

Let AB be the common normal (1.2). Let v1 and v2 be the velocities of the two spheres after im-
pact making an angle θ and ϕ with common normal AB. Before impact velocities along the common
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normal AB are u1 cosα and u2 cos β and velocities perpendicular to AB are u1 sinα and u2 sin β. Af-
ter impact velocities along AB are v1 cos θ and v2 cosϕ and perpendicular to AB are v1 sin θ and v2 sinϕ
By the prinicple of conservation of momentum, the total momentum of two spheres along the common
normal is unaltered by the impact.

∴ m1v1 cos θ +m2v2 cosϕ = m1u1 cosα +m2u2 cos β (1.4.1)

by Newton’s experimental law on relative velocity along the common normal

v1 cos θ − v2 cosϕ = −e(u1 cosα− u2 cos β) (1.4.2)

since there is no force perpendicular to the common normal AB, the velocities of the spheres per-
pendicular to the common normal AB remain unaltered due ot impact. Hence

v1 sin θ = u1 sinα (1.4.3)

and, v2 sinϕ = u2sinβ (1.4.4)

multiplying equation (1.4.2) by m2 and adding to equation (1.4.1)

m1v1 cos θ +������
m2v2 cosϕ = m1u1 cosα +m2u2 cos β

m2v1 cos θ −������
m2v2 cosϕ = −em2u1 cosα + eu2m2 cos β

v1 cos θ =
u1 cosα(m1 − em2) +m2u2 cos β(1 + e)

m1 +m2

(1.4.5)

multiplying equation (1.4.2) by m1 and subtracting from equation (1.4.1)

((((((m1v1 cos θ +m2v2 cosϕ = m1u1 cosα +m2v2 cos β

−((((((m1v1 cos θ +m1v2 cosϕ = em1u1 cosα− eu2m1 cos β

v2 cosϕ =
m1(1 + e)v1 cosα + (m2 − em1)u2 cos β

(m1 +m2)
(1.4.6)

Squaring equation (1.4.3) and equation (1.4.5) and adding, we get v21 and hence we can find v1.
Dividing equation (1.4.3) and (1.4.5) ,we get tan θ. Similarly, from (1.4.4) and (1.4.6) we get v2 and
tanϕ. Therefore v1, v2, ϕ and θ are determined uniquely.

Cor.1 impulse is equal to change in momentum measured along its common normal

= m1v1 cos θ −m1u1 cosα

= m1

(
(m1 − em2)u1 cosα +m2(1 + e)u2 cos β

(m1 +m2)
− u1 cosα

)
=

m1

(m1 +m2)
(((((((miu1 cosα− em2u1 cosα +m2(1 + e)u2 cos β −((((((m1u1 cosα−m2u1 cosα)

=
m1m2(1 + e)

m1 +m2

(u2 cos β − u1 cosα) (1.4.7)

This is equal and opposite to the impulse on m2.
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1.4.1 Loss of K.E. due to Oblique impact

The velocities of the spheres perpendicular to the common normal are unaltered. Therefore, the loss
of K.E. is the same as in the case of direct impact if we substitute u1 cosα and u2 cos β for u1 and
u2 respectively.

∴ The loss in K.E. =
m1m2(1− e2)

2(m1 +m2)
(u1 cosα− u2 cos β)

2 (1.4.1)

1.5 Projectile Motion

Motion of a particle under constant acceleration (acceleration due to gravity) is called Projectile mo-
tion. In projectile motion, the particle is either in straight line (One dimensional ) or parabolic(Two
dimensional). In one dimensional motion, the initial velocity make an angle either zero or 180 with
constant acceleration. In parabolic motion the angle is other than zero or 180.

1.5.1 Time of Flight, Maximum Height and Horizontal Range of a Pro-
jectile

Figure (1.3) shows a particle projected form the point O with an initial velocity u at an angle α with
the horizontal. It goes through the highest point A and falls at B on the horizontal surface through
O. The point O is called the point of projection, the angle α is called angle of projection, the
distance OB is called Horizontal range (R) or simply range and the vertical height AC is called
Maximum height (H). The total time taken by the particle in describing the path OAB is called
the Time of flight(T).

R

u

� c

�

�
�

y

x

g

�

Figure 1.3: Projectile Motion

Time of Flight (T)
Reference to the figure, x and y axis are in the direction shown in Figure. X is along the horizontal
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direction and y is vertically upwards. Thus,

ux = u cosα

uy = u sinα

ax = 0

and ay = −g

At point B, sy = 0. So applying in the equation

sy = uyt+
1

2
ayt

2

we have,

0 = (u sinα)t− 1

2
gt2

∴ t = 0,
2u sinα

g

Both t = 0 and t =
2u sinα

g
corresponding to the situation where sy = 0. and time t =

2u sinα

g
corresponding to point B. Thus, time of flight of the projectile is

T = tOAB or T =
2u sinα

g

Maximum Height(H)
At point A, vertical component of velocity becomes zero, i.e. vy = 0 Substituting the proper values
in

v2y = u2
y + 2aysy

we have, 0 = (u sinα)2 + 2(−g)H

∴ H =
u2 sin2 α

2g

Horizontal Range (R) Distance OB is the rangae R. This is also equal to the displacement

of particle along x-axis in time t=T. Thus, applying sx = uxt+
1

2
axt

2, we get

R = (u cosα)(
2u sinα

g
) + 0

as ax = 0 and t = T =
2u sinα

g

∴ R =
2u2 sinα cosα

g
=

u2 sin 2α

g

R =
u2 sin 2α

g
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1.5.2 Time period and range on an inclined plane

A particle is projected with velocity u at an angle α to the horizontal form a point O on an inclined
plane, inclined at an angle θ to the horizontal. Let the particle strike the inclined plane at A. Then
OA in the range on the inclined plane.

g

O

B
u

A

X

g cos �g sin
�

�
�

Figure 1.4: Range on inclined plane

Let OX be the horizontal and OA be inclined plane. OB is the perpendicular to OA.
Component of initial velocity u along OA = u cos(α− θ)
Component of initial velocity u along OB = u sin(α− θ)

The projectile move in opposite direction of g
Acceleration along OA = −g sin θ
Acceleration along OB = −g cos β

Now, let T be the time taken by the particle to go from O to A. When the particle reaches A
after time T, The distance moved perpendicular to the plane is zero. Hence on substituting equation

s = ut+
1

2
at2, we have

0 = u sin(α− θ).T − 1

2
g cos θ.T 2

∴ T =
2u sin(α− θ)

g cos θ
(1.5.1)

When the particle strikes A after time T, the distance OA moved is the range on the inclined plane

∴ R = u cos(α− θ).T − 1

2
g sin θ.T 2

= u sin(α− θ)
2u sin(α− θ)

g cos θ
− 1

2
g sin θ

4u2 sin2(α− θ)

g2 cos2 θ

=
2u2 sin(α− θ)

g cos2 θ
[cos(α− θ) cos θ − sin(α− θ) sin θ]

R =
2u2 sin(α− θ) cosα

g cos2 θ
(1.5.2)

1.5.3 Range and Time of flight down an inclined plane

The particle is projected down the inclined plane from O at an elevation α as on Figure(1.5). Initial
velocities along and perpendicular to OA are u cos(α + θ) and u sin(α + θ). Acceleration along and
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� X

O

u

�

�

�

Figure 1.5: Range and Time of flight down an inclined plane

perpendicular to OA are g sin θ and− g cos θ. When the particle reaches A after time T, the distance
moved perpendicular to the inclined plane is zero. Therefore

0 = u sin(α + θ).T − 1

2
g cos θ.T 2

T =
2u sin(α + θ)

g cos θ
(1.5.1)

H = u cos(α + θ).T +
1

2
g sin θ.T 2

= u cos(α + θ)
2u sin(α + θ)

g cos θ
+

1

2
g sin θ

4u2 sin2(α + θ)

g2 cos2 θ

=
2u2 sin(α + θ)

g cos2 θ
[cos(α + θ) cos θ + sin θ sin(α + θ)]

=
2u2 sin(α + θ)

g cos2 θ
cos ((α + θ)− θ)

H =
2u2 sin(α + θ)

g cos2 θ
cosα (1.5.2)

1.6 Two Body Problem and the Reduced Mass

Two body problem effectively reduced to one body problem by introduce the concept of reduced
mass.. Let us consider two particle of masses m1 and m2 , whose instantaneous position vectors with
respect to origin O in an inertial reference frame are r1 and r2 as on figure (1.6).

The vector distance of m1 from m2 is r = r1 − r2

The particles exert gravitational forces of attraction on each other which act along the vector r
and are central forces. Let F12 be the force act on mass m1 by mass m2. Then equation of motion
for m1 and m2 with respect to O becomes

m1
d2r⃗1
dt2

= F⃗12 and m2
d2r⃗2
dt2

= F⃗21

11



O

m2

r2

r=r1-r2

r1

m1

F12 F21

Figure 1.6: Reduced mass in Two body broblem

By Newton’s third law, F⃗21 = −F⃗12 = F⃗ (say), then

d2r⃗1
dt2

= − F⃗

m1

and
d2r⃗2
dt2

=
F⃗

m2

Subtracting these equations, we get

d2(r⃗1 − r⃗2)

dt2
= −

(
1

m1

+
1

m2

)
F⃗

But from figure (1.6) r⃗1 − r⃗2 = r⃗

d2r⃗

dt2
= −

(
1

m1

+
1

m2

)
F r̂

Where F is the magnitude of the force and is any function of r⃗, and r̂ is the unit vector along r⃗

Put
1

µ
=

1

m1

+
1

m2

Then,
d2r⃗

dt2
= − 1

µ
F r̂

or µ
d2r⃗

dt2
= −F r̂

The equation represents a one body problem because it is similar to equation of motion of a single
particle of mass µ at a distance r⃗ from m1, considered as fixed origin of inertial frame.

Let m1 and m2 be the masses of the electron and proton of the hydrogen atom. Their reduced
mass is given by

µ =
m1m2

m1 +m2

=
m1

1 + (m1/m2)
≈ m1

(
1− m1

m2

)
m1

m2

is very small in comparison with 1, ∴ µ = m1.
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Chapter 2

Newtonian Mechanics

2.1 Centre of Mass

Definition: Consider the motion of the system consisting of a large number of particles. One point
in the system, which behave as whole mass of the system concentrated on it and all external forces
acting at this point. This point is called the Centre of mass of the system.

2.1.1 Position of Center of Mass of Two Particle

Center of mass of two particles of mass m1 and m2 separated by a distance of d lies in between the
two particles. The distance of centre of mass from any of the particle (r) is inversely proportional
to the mass of the particle (m)

COMm1 m2

r2r1

Figure 2.1: Cenre of Mass of two Particles

i.e. r ∝ 1

m

or
r1
r2

=
m2

m1

or m1r1 = m2r2

or r1 =

(
m2

m1 +m2

)
d and r2 =

(
m1

m1 +m2

)
d

Here, r1 is the distance of centre of mass from m1 and r2 is the distance of centre of mass form m1.
Further, if m1 = m2 then r1 and r2 is equal to d

2
. i.e, centre of mass lies midway between the two

particles of equal mass. Similarly, r1 > r2 if m1 < m2 and r1 < r2 if m1 > m2 i.e, centre of mass is
nearer to the particle having larger masss.
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Figure 2.2: Position vector of Center of mass

2.1.2 Position vector of the centre of mass

Let us consider a system of n particles of masses m1,m2, . . . ,mn with position vectors r⃗1, r⃗2, . . . , r⃗n
relative to fixed origin Figure (2.2.)

The position vector R⃗ of the centre of mass of this system is defined by

R⃗ =
m1r⃗1 +m2r⃗2 +m3r⃗3 + . . . ,mnr⃗n

m1 +m2 +m3 + . . . ,mn

=

∑n
k=1 mkr⃗k∑n
k=1mk

=

∑n
k=1 mkr⃗k
M

Here, M is the total mass of the system.
Now, r⃗k = xk î+ ykĵ + zkk̂ and R⃗ = Xî+ Y ĵ + Zk̂
If X,Y and Z be the Cartesian Co-Ordinates of the center of mass, we have

X =
m1x1 +m2x2 + . . . ,mnxn

m1 +m2 + . . .+mn

=

∑n
k=1 mkxk

M

Y =
m1y1 +m2y2 + . . . ,mnyn

m1 +m2 + . . .+mn

=

∑n
k=1mkyk
M

Z =
m1z1 +m2z2 + . . . ,mnzn

m1 +m2 + . . .+mn

=

∑n
k=1 mkzk
M

Here (xi, yi, zi) are co-ordinates of a particle of mass m1.
For a continuous body, we suppose that the body is formed of a large number of infinitesimal mass
elements.Let dm be the mass of such an element at position(x,y,z). Then the co-ordinates of the
center of mass are given by

X = 1
M

∫
v

x dm Y = 1
M

∫
v

y dm Z = 1
M

∫
v

z dm
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Let R⃗ be the position vector of the centre of mass of the body. Then

R⃗ = 1
M

∫
v

r⃗ dm

2.2 Conservation of Linear momentum

Linear momentum of a particle is defined as the product of its mass and velocity. When a particle
of mass m is moving with velocity v⃗, its linear momentum p⃗ is given by

p⃗ = mv⃗

It is a vector quantity. Its units are kg ms−1 and dimensions are [MLT−1].
If the external force applied to a particle is zero, we have

F⃗ = dp⃗
dt

= 0

∴ p⃗ = mv⃗ = a constant

i.e, in the absence of an external force, the linear momentum of the particle is remains constant.
This is known as the law of conservation of linear momentum.

2.3 Angular Momentum

Consider a particle of mass m and linear momentum p⃗ at a position r⃗ relative to origin O. The
angular momentum L⃗ of the particle with respect to the origin O is defined as

L⃗ = r⃗ × p⃗ = m(r⃗ × v⃗)

Angular momentum is a vector. Its magnitude is given by

L⃗ = rp sin θ

where, θ is the angle between r⃗ and p⃗. Its direction is normal to the plane formed by r⃗ and p⃗. The
direction is given by the right hand rule.

The unit of angular momentum is kg m2s−1. For circular motion v = rω. The magnitude of L is
mr2ω = Iω

2.3.1 Conservation of Angular Momentum

τ⃗ext =
dL⃗

dt

suppose there is no external torques acting on a body,τ⃗ext = 0 then dL⃗
dt

= 0 or L⃗ = a constant. The
principle of conservation of angular momentum stated as

When the resultant external torque acting on a system is zero, the total
vector angular momentum of the system remains constant.
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2.4 Degree of Freedom

The number of mutually independent variables required to define the state or position of a system
is the number of degree of freedom. For example, the positions of a simple ideal mass point in space
is defined completely by the three cartesian coordinates. it has three degree of freedom. Extending
this idea, for a system of N particles moving independently of each other, the number of degree of
freedom is 3N.

2.4.1 Constraints

Constraints are restrictions imposed on the position or motion of a system, because of geometrical
conditions.
Examples

1. The beads of an abacus are constrained to one dimensional motion by the supporting wires

2. Gas molecules within a container are constrained by the wallls of the vessel to move only inside
the container.

3. A particle placed on the surface of a solid sphere is restricted by the constraints so that it can
only move on the surface or in the region exterior to the sphere.

2.5 Generalized Co-ordinates

The system consisting of N particles, free from constraints, has 3N independent coordinates or degree
of freedom. If the sum of the constrain of all the particles is k, then the system may be regarded as
a collection of free particles subjected to (3N-k) independent degree of freedom. So only (3N-k) co-
ordinates are needed to describe the motion of the system. These new new co-ordinates q1, q2, . . . qk
are called generalized Co-ordinates of Lagrange. Generalized coordinates may be lengths or angles
or any other set of independent quantities which define the position of the system.

Definition: The generalised coordinates of a material system are the independent parameters
q1, q2, . . . qk which completely specify the configuration of the system, i.e., the position of all its par-
ticles with respect to the frame of reference

Generalized co-ordinates are not unique. They may or may not have the dimension of length.
Depending on the problem, we chose our convenient co-ordinates with dimensions of energy, Length2,
sometimes the combination of angle and co-ordinates etc.,

2.6 Generalized Momenta

The linear momentum of a particle of mass ’m’ moving with velocity ẋ is mẋ. Its kinetic energy is
T = 1/2mẋ2. Differentiating T with respect to ẋ, we have

∂T

∂ẋ
= mẍ = p⃗ (2.6.1)

We define generalized momentumpi corresponding to generalized co-ordinates qi as

p⃗i =
∂T

∂ẋ
(2.6.2)
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Sometimes it is also known as conjugate momentum.
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