
DBMS – Unit II

Normalization

o Normalization is the process of organizing the data in the database.

o Normalization is used to minimize the redundancy from a relation or set of

relations. It is also used to eliminate the undesirable characteristics like

Insertion, Update and Deletion Anomalies.

o Normalization divides the larger table into the smaller table and links them

using relationship.

o The normal form is used to reduce redundancy from the database table.

Purpose of Normalization

Normalization is the process of structuring and handling the relationship between

data to minimize redundancy in the relational table and avoid the unnecessary

anomalies properties from the database like insertion, update and delete. It helps to

divide large database tables into smaller tables and make a relationship between them.

It can remove the redundant data and ease to add, manipulate or delete table fields.

A normalization defines rules for the relational table as to whether it satisfies the

normal form. A normal form is a process that evaluates each relation against defined

criteria and removes the multivalued, joins, functional and trivial dependency from a

relation. If any data is updated, deleted or inserted, it does not cause any problem for

database tables and help to improve the relational table' integrity and efficiency.

Objective of Normalization

1. It is used to remove the duplicate data and database anomalies from the relational

table.

2. Normalization helps to reduce redundancy and complexity by examining new data

types used in the table.

3. It is helpful to divide the large database table into smaller tables and link them using

relationship.

4. It avoids duplicate data or no repeating groups into a table.

5. It reduces the chances for anomalies to occur in a database.

Types of Anomalies

Following are the types of anomalies that make the table inconsistency, loss of

integrity, and redundant data.

1. Data redundancy occurs in a relational database when two or more rows or

columns have the same value or repetitive value leading to unnecessary utilization of

the memory.

HTML Tutorial

Student Table:

StudRegistration CourseID StudName Address Course

205 6204 James Los Angeles Economics

205 6247 James Los Angeles Economics

224 6247 Trent Bolt New York Mathematics

230 6204 Ritchie Rich Egypt Computer

230 6208 Ritchie Rich Egypt Accounts

There are two students in the above table, 'James' and 'Ritchie Rich', whose records

are repetitive when we enter a new CourseID. Hence it repeats the studRegistration,

StudName and address attributes.

2. Insert Anomaly: An insert anomaly occurs in the relational database when some

attributes or data items are to be inserted into the database without existence of other

attributes. For example, In the Student table, if we want to insert a new courseID, we

need to wait until the student enrolled in a course. In this way, it is difficult to insert

new record in the table. Hence, it is called insertion anomalies.

3. Update Anomalies: The anomaly occurs when duplicate data is updated only in

one place and not in all instances. Hence, it makes our data or table inconsistent state.

For example, suppose there is a student 'James' who belongs to Student table. If we

want to update the course in the Student, we need to update the same in the course

table; otherwise, the data can be inconsistent. And it reflects the changes in a table

with updated values where some of them will not.

4. Delete Anomalies: An anomaly occurs in a database table when some records are

lost or deleted from the database table due to the deletion of other records. For

example, if we want to remove Trent Bolt from the Student table, it also removes his

address, course and other details from the Student table. Therefore, we can say that

deleting some attributes can remove other attributes of the database table.

So, we need to avoid these types of anomalies from the tables and maintain the

integrity, accuracy of the database table. Therefore, we use the normalization concept

in the database management system.

Types of Normal Forms

There are the four types of normal forms:

Normal

Form

Description

1NF A relation is in 1NF if it contains an atomic value.

2NF A relation will be in 2NF if it is in 1NF and all non-key attributes are fully functional

dependent on the primary key.

3NF A relation will be in 3NF if it is in 2NF and no transition dependency exists.

4NF A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued

dependency.

https://www.javatpoint.com/dbms-first-normal-form
https://www.javatpoint.com/dbms-second-normal-form
https://www.javatpoint.com/dbms-third-normal-form
https://www.javatpoint.com/dbms-forth-normal-form

5NF A relation is in 5NF if it is in 4NF and not contains any join dependency and joining

should be lossless.

First Normal Form (1NF)

o A relation will be 1NF if it contains an atomic value.

o It states that an attribute of a table cannot hold multiple values. It must hold only

single-valued attribute.

o First normal form disallows the multi-valued attribute, composite attribute, and their

combinations.

Example: Relation EMPLOYEE is not in 1NF because of multi-valued attribute

EMP_PHONE.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385,

9064738238

UP

20 Harry 8574783832 Bihar

12 Sam 7390372389,

8589830302

Punjab

The decomposition of the EMPLOYEE table into 1NF has been shown below:

EMP_ID EMP_NAME EMP_PHONE EMP_STATE

14 John 7272826385 UP

14 John 9064738238 UP

20 Harry 8574783832 Bihar

12 Sam 7390372389 Punjab

https://www.javatpoint.com/dbms-fifth-normal-form

12 Sam 8589830302 Punjab

Second Normal Form (2NF)

o In the 2NF, relational must be in 1NF.

o In the second normal form, all non-key attributes are fully functional dependent on the

primary key

Example: Let's assume, a school can store the data of teachers and the subjects they

teach. In a school, a teacher can teach more than one subject.

TEACHER table

TEACHER_ID SUBJECT TEACHER_AGE

25 Chemistry 30

25 Biology 30

47 English 35

83 Math 38

83 Computer 38

In the given table, non-prime attribute TEACHER_AGE is dependent on TEACHER_ID

which is a proper subset of a candidate key. That's why it violates the rule for 2NF.

To convert the given table into 2NF, we decompose it into two tables:

TEACHER_DETAIL table:

TEACHER_ID TEACHER_AGE

25 30

47 35

83 38

TEACHER_SUBJECT table:

TEACHER_ID SUBJECT

25 Chemistry

25 Biology

47 English

83 Math

83 Computer

Third Normal Form (3NF)

o A relation will be in 3NF if it is in 2NF and not contain any transitive partial dependency.

o 3NF is used to reduce the data duplication. It is also used to achieve the data integrity.

o If there is no transitive dependency for non-prime attributes, then the relation must be

in third normal form.

A relation is in third normal form if it holds atleast one of the following conditions for

every non-trivial function dependency X → Y.

1. X is a super key.

2. Y is a prime attribute, i.e., each element of Y is part of some candidate key.

Example:

EMPLOYEE_DETAIL table:

EMP_ID EMP_NAME EMP_ZIP EMP_STATE EMP_CITY

222 Harry 201010 UP Noida

333 Stephan 02228 US Boston

444 Lan 60007 US Chicago

555 Katharine 06389 UK Norwich

666 John 462007 MP Bhopal

Super key in the table above:

1. {EMP_ID}, {EMP_ID, EMP_NAME}, {EMP_ID, EMP_NAME, EMP_ZIP}....so on

Candidate key: {EMP_ID}

Non-prime attributes: In the given table, all attributes except EMP_ID are non-

prime.

Here, EMP_STATE & EMP_CITY dependent on EMP_ZIP and EMP_ZIP dependent

on EMP_ID. The non-prime attributes (EMP_STATE, EMP_CITY) transitively

dependent on super key(EMP_ID). It violates the rule of third normal form.

That's why we need to move the EMP_CITY and EMP_STATE to the new

<EMPLOYEE_ZIP> table, with EMP_ZIP as a Primary key.

EMPLOYEE table:

EMP_ID EMP_NAME EMP_ZIP

222 Harry 201010

333 Stephan 02228

444 Lan 60007

555 Katharine 06389

666 John 462007

EMPLOYEE_ZIP table:

EMP_ZIP EMP_STATE EMP_CITY

201010 UP Noida

02228 US Boston

60007 US Chicago

06389 UK Norwich

462007 MP Bhopal

Advanced Normalization

Boyce Codd normal form (BCNF)

o BCNF is the advance version of 3NF. It is stricter than 3NF.

o A table is in BCNF if every functional dependency X → Y, X is the super key of the table.

o For BCNF, the table should be in 3NF, and for every FD, LHS is super key.

Example: Let's assume there is a company where employees work in more than one

department.

EMPLOYEE table:

EMP_ID EMP_COUNTRY EMP_DEPT DEPT_TYPE EMP_DEPT_NO

264 India Designing D394 283

264 India Testing D394 300

364 UK Stores D283 232

364 UK Developing D283 549

In the above table Functional dependencies are as follows:

1. EMP_ID → EMP_COUNTRY

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate key: {EMP-ID, EMP-DEPT}

The table is not in BCNF because neither EMP_DEPT nor EMP_ID alone are keys.

To convert the given table into BCNF, we decompose it into three tables:

EMP_COUNTRY table:

EMP_ID EMP_COUNTRY

264 India

264 India

EMP_DEPT table:

EMP_DEPT DEPT_TYPE EMP_DEPT_NO

Designing D394 283

Testing D394 300

Stores D283 232

Developing D283 549

EMP_DEPT_MAPPING table:

EMP_ID EMP_DEPT

D394 283

D394 300

D283 232

D283 549

Functional dependencies:

1. EMP_ID → EMP_COUNTRY

2. EMP_DEPT → {DEPT_TYPE, EMP_DEPT_NO}

Candidate keys:

For the first table: EMP_ID

For the second table: EMP_DEPT

For the third table: {EMP_ID, EMP_DEPT}

Now, this is in BCNF because left side part of both the functional dependencies is a

key.

Fourth normal form (4NF)

o A relation will be in 4NF if it is in Boyce Codd normal form and has no multi-valued

dependency.

o For a dependency A → B, if for a single value of A, multiple values of B exists, then the

relation will be a multi-valued dependency.

Fifth normal form (5NF)

o A relation is in 5NF if it is in 4NF and not contains any join dependency and joining

should be lossless.

o 5NF is satisfied when all the tables are broken into as many tables as possible in order

to avoid redundancy.

o 5NF is also known as Project-join normal form (PJ/NF).

	DBMS – Unit II
	Normalization
	Purpose of Normalization
	Objective of Normalization
	Types of Anomalies
	Types of Normal Forms

	First Normal Form (1NF)
	Second Normal Form (2NF)
	Third Normal Form (3NF)
	Advanced Normalization
	Boyce Codd normal form (BCNF)
	Fourth normal form (4NF)
	Fifth normal form (5NF)

