RDBMS -20UIT4CCT7A
Unit 1

By

Zunaitha Sulthana AMS

Assistant Professor

Department of Computer Science & IT

Jamal Mohamed College
Tiruchirappalli-20

Content

Roles in Database Environment
Advantages and Disadvantages

The Three-Levels of ANSI-SPARC
Architecture

Database Languages
Data Models

Roll in the Database Environment

» Data Administrator (DA)

< Database planning

« Development and maintenance of standards, policies and procedures
» Database Administrator (DBA)

< Physical realization of the database

< Physical database design and implementation

< Security and integrity control

<« Maintenance of the operational system

« Ensuring satisfactory performance of the applications for users
» Database Designers (Logical and Physical)
» Application Programmers
» End Users (naive and sophisticated)

Database Design

e The structure of the database is
determined during database design

e |t can be an extremely complex task

e Need to think of the data first and then
application -> paradigm shift

_ /

Roles in the Database Environment

e People: The fifth component in the
DBMS environment
e There are 4 distinct types of people:
Data & Database Administrators
Database Designers

Application Developers
End-Users

_ »

Data & Database Administrators

e DA (data administrator) is responsible for
the management of the data resource:
Database planning
Development & maintenance of standards
Policies and procedures
Conceptual/logical database design

\- o

Data & Database Administrators

e DBA (Database Administrator) is
responsible for the physical realisation of
the database:

Physical database design & implementation
Security & integrity control
Maintenance of operational system

Ensuring satisfactory performance of the
applications for users

_ /

Database Designers

e Database designers is concerned with:
Identifying the data

ldentifying relationship between entities and
attributes

Identify the relationships between the data

Understand the constraints on the data
(business rules)

\- .

Database Designers

e The work of the logical database
designers can be split into two stages:
Conceptual database design
» Independent of implementation details
» Application programs
» Programming languages
Logical database design

» Specific data models
» E.g.: relational, network, hierarchical or object-

\ oriented j

Database Designers

e Physical database designer decides
how the logical database design is to be
physically realised.

e |t involves:

Mapping the logical database design into a
set of tables & integrity constraints

Selecting specific storage structures and
access methods for the data

\ Designing any security measures /

Application Developers

e They worked from the specification
produced by systems analysts

e Each program may contain statements
that request the DBMS to perform some
operation:

Retrieving data
Insert data
Delete data

\ Updating data /

End Users

e Clients of the database

e Can be classified as:

Naive users
« Typically unaware of the DBMS

Sophisticated users
» Familiar with the structure of the DBMS

» May use a high-level query language to perform
required operation

_ .

Advantages and Disadvantages

Advantages of DBMS

> Control of data redundancy
> Data consistency

> More information from the same amount of
data

> Sharing of data
> Improved data integrity (constraints)
> Improved security (authentication, rights)

Advantages of DBMS

> Economy of scale (economical cost)
> Balance conflicting requirements

> Improved data accessibility and
responsiveness (ad hoc queries)

> Increased productivity (developer)

> Improved maintenance through data
independence

Disadvantages

> Complexity

> Size (disk space for DBMS)
» Cost of DBMS

» Additional hardware costs
> Cost of conversion

> Performance

» Higher impact of a failure

The Three-Levels of
ANSI-SPARC Architecture

Objectives of Three-Level

Architecture
»> ANSI-SPARC Three Level Architecture

> All users should be able to access same data
but have a different customized view

> A user’s view is immune to changes made in
other views

» Users should not need to know physical
database storage details

Objectives of Three-Level

Architecture..

> DBA should be able to change database
storage structures without affecting the
users’ views

> Internal structure of database should be
unaffected by changes to physical aspects of
storage

> DBA should be able to change conceptual
structure of database without affecting all users

ANSI-SPARC Three-Level
Architecture

External
level

Conceptual
level

Internal
level

Physical data
organization

User 1

User 2 Usern

View 1

View 2 ves View n

|

Conceptual
schema

Internal
schema

Database

ANSI-SPARC Three-Level
Architecture..

» External Level

< Users’ view of the database
< Describes that part of database that is relevant to a
particular user

<+ Different views may have different representation of same
data (e.g. different date formats, age derived from DOB

etc.)

ANSI-SPARC Three-Level

Architecture..
» Conceptual Level

< Community view of the database

< Describes what data is stored in database
relationships among the data

< Along with any constraints on data

< Independent of any storage considerations

i. all entities, their attributes, and their relationships;
i. the constraints on the data;

iii. semantic information about the data

security and integrity information.

and

ANSI-SPARC Three-Level
Architecture..

» Internal Level

» storage space allocation for data and indexes;

» record descriptions for storage (with stored
- sizes for data items);

» record placement;

» data compression and data encryption
techniques.

ANSI-SPARC Three-Level
Architecture..

» Internal Level

< Physical representation of the database on the computer
< Describes how the data is stored in the database

< physical implementation of the database to achieve
optimal runtime performance and storage space
utilization

+ Data structures and file organizations used to store data
on storage devices

« Interfaces with the operating system access methods to
place the data on the storage devices, build the indexes,
retrieve the data, and so on

Differences between Three Levels of ANSI-SPARC
Architecture

External view 1

sNo

fName

IName

age

Conceptual level

Internal level

\

External view 2

staffNo

IName

branchNo

/

staffNo

fName

IName

salary

branchNo

struct STAFF {
int staffNo;

int branchNo;

char fName [15];
char IName [15];
struct date dateOf Birth;
float salary;

otriint QTACE *nave:

I* nnintar tn navt Qiaff rarnaed */

Schemas

» External Schemas
« Also called subschemas
< Multiple schemas per database
< Corresponds to different views of data

> Conceptual Schema

< Describes all the entities, attributes, and relationships
together with integrity constraints

< Only one schema per database

Mappings

> The DBMS is responsible for mapping

between these three types of schema:

<« The DBMS must check that each external schema is
derivable from the conceptual schema, and it must use the
information in the conceptual schema to map between
each external schema and the internal schema

> Types of mappings
« Conceptual/Internal mapping
+ External/Conceptual mapping

Conceptual/Internal Mapping

> Enables the DBMS to

< Find the actual record or combination of records in
physical storage that constitute a logical record in the
conceptual schema,

+ Together with any constraints to be enforced on the
operations for that logical record

< It also allows any differences in entity names, attribute
names, attribute order, data types, and so on, to be
resolved

External/Conceptual Mapping

» Enables the DBMS to

+ Map names in the user’s view on to the relevant part of
the conceptual schema

Instances

> Database Schema
+ Description of database (also called intension)
+ Specified during design phase
+ Remain almost static

> Database Instance
+ Data in the database at any particular point in time
+ Dynamic (changes with the time)

<+ Also called an extension (or state) of database

Data Independence

> Logical Data Independence
+ Refers to protection of external schemas to changes in
conceptual schema
+ Conceptual schema changes (e.g. addition/removal of
entities)

<+ Should not require changes to external schema or rewrites
of application programs

Data Independence

> Physical Data Independence

+ Refers to immunity of conceptual schema to changes in
the internal schema

< Internal schema changes (e.g. using different file
organizations, storage structures, storage devices etc.)

% Should not require change to conceptual or external
schemas

Data Independence and the ANSI-SPARC
Three-Level Architecture

External External External
schema schema schema
External/conceptual Logical data independence
mapping
Conceptual
schema
Conceptual/interna Physical data independence
mapping
Internal

schema

Database Languages

Database Languages

> Data sublanguage consist of two parts:

< DDL (Data Definition Language)
<« DML (Data Manipulation Language)

> Data sublanguage

< Does not include constructs for all computing needs such
as iterations or conditional statements

<+ Many DBMSs provide embedding the sublanguage in a
high level programming language e.g. C, C++, Java etc.

< In this case , these high level languages are called host
languages

~

Data Definition Language (DDL)

A

> Allows the DBA or user to describe and
name entities, attributes, and relationships
required for the application

> Plus any associated integrity and security
constraints

> System catalog (data dictionary, data
directory)

> Metadata (data about data, data
descrintion. data definitions)

Data Manipulation Language (DML)
> Provides basic data manipulation

operations on data held in the database

<+ Procedural DML
< Non-Procedural DML

Procedural DML

> Allows user to tell system exactly how to
manipulate data

< Operate on records individually
< Typically, embedded in a high level language
< Network or hierarchical DMLs

< More work is done by user (programmer)

Non-Procedural DML

> Allows user to state what data is needed

rather than how it is to be retrieved

< Operate on set of records

< Relational DBMS include e.g. SQL, QBE etc.

< Easy to understand and learn than procedural DML
+ More work is done by DBMS than user

< Provides considerable degree of data independence
+ Also called declarative languages

Fourth Generation Languages (4GLs)

> No clear consensus
< Forms generators
< Report generators
< Graphics generators

2 Application generators
+ Examples : SQL and QBE

Data Models

Data Model

> Integrated collection of concepts for
describing data, relationships between data,
and constraints on the data in an
organization

Purpose of Data Model

> To represent data in an understandable way

< Represents the organization itself

< Helps in unambiguous and accurate communication
between between database designers and end-users about
their understanding of the organizational data

Components of a Data Model

> A data model comprises:

< A structural part
< A manipulative part
<« Possibly a set of integrity rules

<+ ANSI-SPARC architecture related models

= External data model (Universe of Discourse)
= Conceptual data model (DBMS independent)
= Internal data model

Categories of Data Models

> Categories of data models include:

<+ Object-based
= Entity-Relationship
= Semantic
= Functional
= Object-Oriented

<+ Record-based
= Relational Data Model
= Network Data Model
= Hierarchical Data Model

+ Physical

Relational Model

The data in this model is kept in the form of
a table that iIs two-dimensional. All of the
data is kept in the form of rows and
columns. Tables are the foundation of a
relational paradigm.

Entity-Relationship Data Model: An ER model is the
logical representation of data as objects and relationships
among them.

A set of attributes describe the entities.

For example, student_name, student_id describes the
'student’ entity.

A set of the same type of entities is known as an 'Entity set’,
and the set of the same type of relationships is known as
'relationship set'.

Semantic Data Model
It is a data model defined on a higher level that captures the
databases’ semantic description, structure, and form.

Functional Data Models

Functional Data Models are a form of Semantic Data Model which appeared
early in database history. They use the mathematical formalism of function
application to represent and follow associations between data items. Functions
are usually applied to variables whose values may be object identifiers or
record instances.

EG : name(town(P)) = Ptown.name = “Aberdeen”.

Object Oriented Data Model

In Object Oriented Data Model, data and their relationships are contained in a
single structure which is referred as object in this data model. In this, real
world problems are represented as objects with different attributes. All objects
have multiple relationships between them. Basically, it is combination of
Object Oriented programming and Relational Database Model

Relational Data Model

Branch
branchNo | street city postCode
B0OO05 22 Deer Rd London SW1 4EH
B007 16 Argyll St | Aberdeen | AB2 3SU
B003 163 Main St | Glasgow G119QX
3004 32 Manse Rd | Bristol BS99 INZ
B002 56 Clover Dr | London NWI10 6EU

Staff
staffNo | fName | IName | position sex | DOB salary | branchNo
SL21 John White | Manager M 1-Oct-45 30000 | BOO5
SG37 Ann Beech Assistant F 10-Nov-60 | 12000 | BO03
SG14 David Ford Supervisor | M 24-Mar-58 | 18000 | BOO3
SA9 Mary Howe Assistant F 19-Feb-70 9000 | BOO7
SG5 Susan Brand Manager F 3-Jun-40 24000 | BO0O3
SL41 Julie Lee Assistant F 13-Jun-65 9000 | BOO5

Network Model

he main difference between this model
and the hierarchical model is that any
record can have several parents in the
network model. It uses a graph instead of a
hierarchical tree.

Network Data Model

B00S | 22 DeerRd | London li SL41 | Jule | Lee Assistant | 9000
B0O7 | 16 Argyl St | Aberdeen SL21 | John | White Manager | 30000
B003 | 163 MainSt | Glasgow SA9 | Mary | Howe Assistant | 9000
B004 | 32ManseRd | Bristol SG37 | Ann | Beech Assistant | 12000
B002 | 56 Clover Dr | London SG14 | David | Ford Supervisor | 18000

SG5 | Susan | Brand Manager | 24000

Hierarchical Model

This concept uses a hierarchical tree structure to
organize the data. The hierarchy begins at the
root, which contains root data, and then grows

Into a tree as child nodes are added to the parent
node.

Hierarchical Data Model

B004 Bristol B002 London
B00S London B003 Glasgow B007
SLa1 | Julie | Lee ... | Assistant | 9000
SL21 | John | White | ... | Manager | 30000
SG37 | Amn | Beech | ... | Assistant | 12000
SG14 | David | Ford ... | Supervisor | 18000
SG5 | Susan | Brand Manager | 24000

SA9 | Mary | Howe | ... | Assistant

Physical Data Model

Physical data Models describes how data
IS stored In the computer , representing
Information such as record structures ,
record orderings and access paths.

Most common are unifying model and
frame memory.

Conceptual Modeling

> Conceptual modeling is process of
developing a model of information use in an
enterprise that is independent of

implementation details

< Should be complete and accurate representation of an
organization’s data requirements

+ Conceptual schema is the core of a system supporting all
user views

> Conceptual vs. logical data model

UNIT 5 PL/SQL

5.1 Introduction to PL/SQL

PL/SQL is a combination of SQL along with the procedural features of programming languages. It
was developed by Oracle Corporation in the early 90's to enhance the capabilities of SQL.

PL/SQL is one of three key programming languages embedded in the Oracle Database, along with
SQL itself and Java.

e PL/SQL is a completely portable, high-performance transaction-processing language.

e PL/SQL provides a built-in, interpreted and OS independent programming environment.
e PL/SQL can also directly be called from the command-line SQL*Plus interface.

e Direct call can also be made from external programming language calls to database.

e PL/SQL's general syntax is based on that of ADA and Pascal programming language.

Features of PL/SQL
PL/SQL has the following features

e PL/SQL is tightly integrated with SQL. [It offers extensive error checking. [J It offers
numerous data types.
e |t offers a variety of programming structures. [J It supports structured programming
through functions and procedures.
e |t supports object-oriented programming. [J It supports the development of web
applications and server pages.
PL/SQL-Basic Syntax
PL/SQL programs are divided and written in logical blocks of code. Each block consists of three
sub-parts

Declarations
This section starts with the keyword DECLARE. It is an optional section and defines all variables,
cursors, subprograms, and other elements to be used in the program.

Executable Commands

This section is enclosed between the keywords BEGIN and END and it is a mandatory section. It
consists of the executable PL/SQL statements of the program. It should have at least one
executable line of code, which may be just a NULL command to indicate that nothing should be
executed.

Exception Handling

This section starts with the keyword EXCEPTION. This optional section contains exception(s)
that handle errors in the program.

DECLARE

<declarations section>
BEGIN

<executable command(s)>
EXCEPTION

<exception handling>
END;

Example "Hello World"

DECLARE

message varchar2(20):= 'Hello, World!";
BEGIN
dbms_output.put_line(message);

END;

5.2 PL/SQL- Variables

The name of a PL/SQL variable consists of a letter optionally followed by more letters, numerals,
dollar signs, underscores, and number signs and should not exceed 30 characters. By default,
variable names are not case-sensitive. You cannot use a reserved PL/SQL keyword as a variable
name.

Variable Declaration in PL/SQL

PL/SQL variables must be declared in the declaration section or in a package as a global variable.
When you declare a variable, PL/SQL allocates memory for the variable's value and the storage
location is identified by the variable name.

The syntax for declaring a variable is

variable_name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT initial_value]

Initializing Variables in PL/SQL
Whenever you declare a variable, PL/SQL assigns it a default value of NULL. If you want to

initialize a variable with a value other than the NULL value, you can do so during the declaration,
using either ofthe following

The DEFAULT keyword The assignment operator

For example —
counter binary_integer :=0;
greetings varchar2(20) DEFAULT 'Have a Good Day’;

You can also specify that a variable should not have a NULL value using the NOT NULL
constraint. If you use the NOT NULL constraint, you must explicitly assign an initial value for
that variable.

It is a good programming practice to initialize variables properly otherwise, sometimes programs
would produce unexpected results. Try the following example which makes use of various types
of variables

DECLARE
a integer := 10;
b integer := 20;
C integer;
f real;
BEGIN
c:=a+h;
dbms_output.put_line('VValue of c: ' || ¢);
f:=70.0/3.0;
dbms_output.put_line('VValue of f: ' || f);
END;

Variable Scope in PL/SQL

PL/SQL allows the nesting of blocks, i.e., each program block may contain another inner block. If
a variable is declared within an inner block, it is not accessible to the outer block. However, if a
variable is declared and accessible to an outer block, it is also accessible to all nested inner blocks.

There are two types of variable scope

] Local variables — Variables declared in an inner block and not accessible to outer blocks.
[J Global variables — Variables declared in the outermost block or a package.

Following example shows the usage of Local and Global variables in its simple form —

DECLARE
-- Global variables
numl1 number ;= 95;
numz2 number := 85;
BEGIN

dbms_output.put_line('Outer Variable num1: ' || numl);
dbms_output.put_line('Outer Variable num2: ' || numz2);

DECLARE
-- Local variables
numl1 number := 195;
num2 number := 185;
BEGIN

dbms_output.put_line('Inner Variable num1: ' || num1);
dbms_output.put_line('Inner Variable num2: ' || numz2);

END;
END;

5.3 PL /SQL Data Types

Category

Description

Scalar

Single values with no internal components,
such as a NUMBER, DATE, or
BOOLEAN.

Large Object LOB

Pointers to large objects that are stored
separately from other data items, such as text,
graphic images, video clips, and sound
waveforms.

Composite Data items that have internal components that
can be accessed individually. For example,
collections and records.

Reference Pointers to other data items.

Scalar Data types:

CHAR fixed length character data

Char,varchar,raw nchar, long

VARCHAR 2 | variable character length data

NUMBER Fixed or floating point numbers of
vitually any size

DECIMALprec, scale, NUMERICpre,
secale, FLOAT, INT, INTEGER,

SMALLINT, REAL

BINARY Integers
INTEGER
DATE date values YEAR,MONTH,
DAY ,HOUR,MINUTE,SECOND
BOOLEAN TRUE or FALSE Note: there is no BINARY INTEGER, BINARY_FLOAT,

BOOLEAN data type in database table.

BINARY_DOUBLE

Following is a valid declaration:

DECLARE

numl INTEGER;

num2 REAL;

num3 DOUBLE PRECISION;

BEGIN

null;

END;

/

Composite Data types:

Table

NN =

Record

Is similar but not the same as a database table
Must contain only one column of any scalar datatype
Is like a one-dimensional array of any size
. Has its elements indexed with a binary integer column called the primary key of the table

1. Contains uniquely defined columns of different data types,
2. Enables us to treat dissimilar columns that are logically related as a single unit.

5.4 PL/SQL Control Structures

Decision-making structures require that the programmer specify one or more conditions to be
evaluated or tested by the program, along with a statement or statements to be executed if the
condition is determined to be true, and optionally, other statements to be executed if the condition
is determined to be false.

1. if then statement

2. if then else statements

3. nested if-then statements

4. if-then-elseif-then-else ladder

Following is the general form of a typical conditional (i.e., decision making) structure found in
most of the programming languages

If condition

is false

If condition
is true

conditional V
code

PL/SQL programming language provides following types of decision-making statements.

Syntax

IF condition

THEN

Statement: {It is executed when condition is true}
END IF;

Eg:

declare
numl number:= 10;
num2 number:= 20;

begin
if num1 > num2 then
dbms_output.put_line('numl small’);

end if;

dbms_output.put_line('l am Not in if);

end;
EG:
declare
numl1 number:= 10;
num2 number:= 20;
num3 number:= 20;
begin
if num1 < num2 then
dbms_output.put_line('num1 small num2');
if numl < numa3 then
dbms_output.put_line('num1 small num3 also");
end if;
end if;
dbms_output.put_line(‘after end if");
end;

5.5 PL/SQL - Cursors

Oracle creates a memory area, known as the context area, for processing an SQL statement, which
contains all the information needed for processing the statement; for example, the number of rows
processed, etc.

A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A
cursor

holds the rows (one or more) returned by a SQL statement. The set of rows the cursor holds is
referred to as the active set.

You can name a cursor so that it could be referred to in a program to fetch and process the rows
returned by the SQL statement, one at a time.

There are two types of cursors —

e Implicit cursors
e Explicit cursors

Implicit Cursors

e Implicit cursors are automatically created by Oracle whenever an SQL statement is
executed, when there is no explicit cursor for the statement.

e Programmers cannot control the implicit cursors and the information in it.

e Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit
cursor is associated with this statement.

e For INSERT operations, the cursor holds the data that needs to be inserted.

e For UPDATE and DELETE operations, the cursor identifies the rows that would be
affected.

e Recent implicit cursor as the SQL cursor, which always has attributes such as %FOUND,
%ISOPEN, %NOTFOUND, and %ROWCOUNT.

e The SQL cursor has additional attributes, %BULK_ROWCOUNT and
%BULK_EXCEPTIONS, designed for use with the FORALL statement.

e The following table provides the description of the most used attributes —

e %FOUND Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one
or more rows or a SELECTINTO statement returned one or more rows. Otherwise, it
returns FALSE.

e %NOTFOUND The logical opposite of %FOUND. It returns TRUE if an INSERT,
UPDATE, or DELETE statement affected no rows, or a SELECT INTO statement returned
no rows. Otherwise, it returns FALSE.

o %ISOPEN Always returns FALSE for implicit cursors, because Oracle closes the SQL
cursor automatically after executing its associated SQL statement.

e %ROWCOUNT Returns the number of rows affected by an INSERT, UPDATE, or
DELETE statement, or returned by a SELECT INTO statement.

DECLARE
total_rows number(2);

BEGIN
UPDATE customers
SET salary = salary + 500;
IF sgl%notfound THEN
dbms_output.put_line('no customers selected’);
ELSIF sgl%found THEN
total_rows := sql%rowcount;
dbms_output.put_line(total_rows || ' customers selected *);
END IF;
END;

When the above code is executed at the SQL prompt, it produces the following result —
6 customers selected
PL/SQL procedure successfully completed.

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over the context area.
An explicit cursor should be defined in the declaration section of the PL/SQL Block.

It is created on a SELECT Statement which returns more than one row.

The syntax for creating an explicit cursor is —
CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps —
e Declaring the cursor for initializing the memory
e Opening the cursor for allocating the memory
e Fetching the cursor for retrieving the data
e Closing the cursor to release the allocated memory

Declaring the Cursor
Declaring the cursor defines the cursor with a name and the associated SELECT statement.
For example
—CURSOR c¢_customers IS SELECT id, name, address FROM customers;
Opening the Cursor
Opening the cursor allocates the memory for the cursor and makes it ready for fetching the rows
returned by the SQL statement into it.
For example, we will open the above defined cursor as follows
— OPEN c_customers;
Fetching the Cursor

Fetching the cursor involves accessing one row at a time. For example, we will fetch rows from
the above-opened cursor as follows
— FETCH c_customers INTO c_id, ¢c_name, ¢_addr;
Closing the Cursor
Closing the cursor means releasing the allocated memory. For example, we will close the above-
opened cursor as follows
— CLOSE c_customers;

Example
Following is a complete example to illustrate the concepts of explicit cursors &minua;

DECLARE
c_id customers.id%type;
c_name customerS.No.ame%type;
c_addr customers.address%type;
CURSOR c_customers is
SELECT id, name, address FROM customers;
BEGIN
OPEN c_customers;
LOOP
FETCH c_customers into ¢_id, c_name, ¢_addr;
EXIT WHEN c_customers%notfound;
dbms_output.put_line(c_id || ' || c_name || "' || c_addr);
END LOOP;
CLOSE c_customers;
END;

When the above code is executed at the SQL prompt, it produces the following result —
1 Ramesh Ahmedabad

2 Khilan Delhi

3 kaushik Kota

4 Chaitali Mumbai

5 Hardik Bhopal

6 Komal MP

PL/SQL procedure successfully completed.

5.6 Iterative Control Statement

A loop statement allows us to execute a statement or group of statements multiple times and
following is the general form of a loop statement in most of the programming languages

BEGIN
FORIiIIN1.. 10 LOOP
DBMS_OUTPUT.PUT_LINE(Iteration #' || i);
END LOOP;
ND;

m

teration #
teration #
teration #
teration #
teration #

teration #
teration #
teration #
teration #
teration # 10

A WHILE LOOP statement in PL/SQL programming language repeatedly executes a target
statement as long as a given condition is true.

Syntax

WHILE condition LOOP
sequence_of _statements

END LOOP;

a number(2) := 10;
BEGIN
WHILE a< 20 LOOP
dbms_output.put_line('value of a: ' || a);

a:=a+l,
END LOOP;
END;
/

When the above code is executed at the SQL prompt, it produces the following result —

value of a: 14
value of a: 15
value of a: 16
value of a: 17
value of a: 18
value of a: 19

PL/SQL procedure successfully completed.

5.7 PL/SQL Exception Handling

This section starts with the keyword EXCEPTION. This optional section contains exception(s)
that handle errors in the program.

DECLARE

<declarations section>
BEGIN

<executable command(s)>
EXCEPTION

<exception handling>
END;

The 'Hello World' Example

DECLARE

message varchar2(20):= 'Hello, World!";
BEGIN

dbms_output.put_line(message);
END;

5.8 PL/SQL-Triggers

Triggers are stored programs, which are automatically executed or fired when some events occur.
Triggers are, in fact, written to be executed in response to any of the following events
e A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)
e A database definition (DDL) statement (CREATE, ALTER, or DROP).
e A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or
SHUTDOWN).

Triggers can be defined on the table, view, schema, or database with which the event is associated.

Benefits of Triggers
Triggers can be written for the following purposes —
e Generating some derived column values automatically
e Enforcing referential integrity
e Event logging and storing information on table access
e Auditing
e Synchronous replication of tables
e Imposing security authorizations
e Preventing invalid transactions

Creating Triggers

The syntax for creating a trigger is

— CREATE [OR REPLACE] TRIGGER trigger_name
{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS 0 NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

Declaration-statements
BEGIN

Executable-statements
EXCEPTION

Exception-handling-statements
END;

Where,
e CREATE [OR REPLACE] TRIGGER trigger name — Creates or replaces an existing
trigger with the trigger_name.

e {BEFORE | AFTER | INSTEAD OF} — This specifies when the trigger will be executed.
The

e INSTEAD OF clause is used for creating trigger on a view.

e {INSERT [OR] | UPDATE [OR] | DELETE} — This specifies the DML operation.

e [OF col name] — This specifies the column name that will be updated.

e [ON table name] — This specifies the name of the table associated with the trigger.

e [REFERENCING OLD AS o NEW AS n] — This allows you to refer new and old values
for

e various DML statements, such as INSERT, UPDATE, and DELETE.

e [FOR EACH ROWT] — This specifies a row-level trigger, i.e., the trigger will be executed
for each row being affected. Otherwise the trigger will execute just once when the SQL
statement is

e executed, which is called a table level trigger.

e WHEN (condition) — This provides a condition for rows for which the trigger would fire.
This clause is valid only for row-level triggers.

Example

The following program creates a row-level trigger for the customers table that would fire for
INSERT orUPDATE or DELETE operations performed on the CUSTOMERS table.

This trigger will display the salary difference between the old values and new values

— CREATE OR REPLACE TRIGGER display_salary_changes BEFORE DELETE OR INSERT
OR UPDATE ON customers
FOR EACH ROW
WHEN (NEW.ID > 0)
DECLARE
sal_diff number;
BEGIN
sal_diff := :NEW.salary - :OLD.salary;
dbms_output.put_line('Old salary: ' || :OLD.salary);
dbms_output.put_line('New salary: ' || :NEW.salary);
dbms_output.put_line('Salary difference: ' || sal_diff);
END;
/
When the above code is executed at the SQL prompt, it produces the following result —
Trigger created.

5.9 PL/SQL- Procedures

A subprogram is a program unit/module that performs a particular task. These subprograms are
combined to form larger programs.

This is basically called the 'Modular design'. A subprogram can be invoked by another
subprogram or program which is called the calling program.

A subprogram can be created —
e At the schema level
e Inside a package
e Inside a PL/SQL block

At the schema level, subprogram is a standalone subprogram. It is created with the
CREATEPROCEDURE or the CREATE FUNCTION statement. It is stored in the database and
can be deleted with the DROP PROCEDURE or DROP FUNCTION statement.

A subprogram created inside a package is a packaged subprogram. It is stored in the database and
can be deleted only when the package is deleted with the DROP PACKAGE statement.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters.

PL/SQLprovides two kinds of subprograms —
e Functions — These subprograms return a single value; mainly used to compute and return a
value.
e Procedures — These subprograms do not return a value directly; mainly used to perform an
e action.
Parts of a PL/SQLSubprogram

Declarative Part

It is an optional part. However, the declarative part for a subprogram does not start with the
DECLARE keyword. It contains declarations of types, cursors, constants, variables, exceptions,
and nested subprograms. These items are local to the subprogram and cease to exist when the
subprogram completes execution.

Executable Part

This is a mandatory part and contains statements that perform the designated action.
Exception-handling

This is again an optional part. It contains the code that handles run-time errors.

Creating a Procedure

A procedure is created with the CREATE OR REPLACE PROCEDUREstatement. The simplified

syntax for the CREATE OR REPLACE PROCEDURE statement is as follows

— CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS| AS}

BEGIN

< procedure_body >

END procedure_name;

Where,
e procedure-name specifies the name of the procedure.
e [OR REPLACE] option allows the modification of an existing procedure.
e The optional parameter list contains name, mode and types of the parameters. IN
represents the
e value that will be passed from outside and OUT represents the parameter that will be used
to
e return a value outside of the procedure.
e procedure-body contains the executable part.
e The AS keyword is used instead of the IS keyword for creating a standalone procedure.
Example
The following example creates a simple procedure that displays the string 'Hello World!" on the
screen when executed.

CREATE OR REPLACE PROCEDURE greetings
AS

BEGIN

dbms_output.put_line("Hello World!");

END;

/

When the above code is executed using the SQL prompt, it will produce the following result —
Procedure created.

Executing a Standalone Procedure

A standalone procedure can be called in two ways —

e Using the EXECUTE keyword

e Calling the name of the procedure from a PL/SQL block
The above procedure named 'greetings' can be called with the EXECUTE keyword as
EXECUTE greetings;

The above call will display — Hello World

PL/SQL procedure successfully completed.

The procedure can also be called from another PL/SQL block
— BEGIN

greetings;

END;

/

The above call will display — Hello World

PL/SQL procedure successfully completed.

Deleting a Standalone Procedure

A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for deleting a
procedure is

— DROP PROCEDURE procedure-name;

You can drop the greetings procedure by using the following statement

— DROP PROCEDURE greetings;

Methods for Passing Parameters

Actual parameters can be passed in three ways —
e Positional notationfindMin(a, b, c, d);
e Named notation

findMin(x =>a,y=>b, z=>c¢, m=>d);
e Mixed notation

findMin(a, b, c, m => d);

