
RDBMS -20UIT4CC7A

Unit 1

By
Zunaitha Sulthana AMS
Assistant Professor
Department of Computer Science & IT
Jamal Mohamed College
Tiruchirappalli-20

Content
• Roles in Database Environment

• Advantages and Disadvantages

• The Three-Levels of ANSI-SPARC

Architecture

• Database Languages

• Data Models

Roll in the Database Environment

Advantages and Disadvantages

Advantages of DBMS

Advantages of DBMS

Disadvantages

The Three-Levels of

ANSI-SPARC Architecture

Users

Database

Database Languages

Data Models

Relational Model

The data in this model is kept in the form of

a table that is two-dimensional. All of the

data is kept in the form of rows and

columns. Tables are the foundation of a

relational paradigm.

Entity-Relationship Data Model: An ER model is the

logical representation of data as objects and relationships

among them.

A set of attributes describe the entities.

For example, student_name, student_id describes the

'student' entity.

A set of the same type of entities is known as an 'Entity set',

and the set of the same type of relationships is known as

'relationship set'.

Semantic Data Model

It is a data model defined on a higher level that captures the

databases’ semantic description, structure, and form.

Functional Data Models
Functional Data Models are a form of Semantic Data Model which appeared

early in database history. They use the mathematical formalism of function

application to represent and follow associations between data items. Functions

are usually applied to variables whose values may be object identifiers or

record instances.

EG : name(town(P)) = P.town.name = “Aberdeen”.

Object Oriented Data Model

In Object Oriented Data Model, data and their relationships are contained in a

single structure which is referred as object in this data model. In this, real

world problems are represented as objects with different attributes. All objects

have multiple relationships between them. Basically, it is combination of

Object Oriented programming and Relational Database Model

Network Model

The main difference between this model

and the hierarchical model is that any

record can have several parents in the

network model. It uses a graph instead of a

hierarchical tree.

Hierarchical Model

This concept uses a hierarchical tree structure to

organize the data. The hierarchy begins at the

root, which contains root data, and then grows

into a tree as child nodes are added to the parent

node.

Physical Data Model

Physical data Models describes how data

is stored in the computer , representing

information such as record structures ,

record orderings and access paths.

Most common are unifying model and

frame memory.

UNIT 5 PL/SQL

5.1 Introduction to PL/SQL

PL/SQL is a combination of SQL along with the procedural features of programming languages. It

was developed by Oracle Corporation in the early 90's to enhance the capabilities of SQL.

PL/SQL is one of three key programming languages embedded in the Oracle Database, along with

SQL itself and Java.

 PL/SQL is a completely portable, high-performance transaction-processing language.

 PL/SQL provides a built-in, interpreted and OS independent programming environment.

 PL/SQL can also directly be called from the command-line SQL*Plus interface.

 Direct call can also be made from external programming language calls to database.

 PL/SQL's general syntax is based on that of ADA and Pascal programming language.

Features of PL/SQL

PL/SQL has the following features

 PL/SQL is tightly integrated with SQL. It offers extensive error checking. It offers

numerous data types.

 It offers a variety of programming structures. It supports structured programming

through functions and procedures.

 It supports object-oriented programming. It supports the development of web

applications and server pages.

PL/SQL-Basic Syntax

PL/SQL programs are divided and written in logical blocks of code. Each block consists of three

sub-parts

Declarations

This section starts with the keyword DECLARE. It is an optional section and defines all variables,

cursors, subprograms, and other elements to be used in the program.

Executable Commands

This section is enclosed between the keywords BEGIN and END and it is a mandatory section. It

consists of the executable PL/SQL statements of the program. It should have at least one

executable line of code, which may be just a NULL command to indicate that nothing should be

executed.

Exception Handling

This section starts with the keyword EXCEPTION. This optional section contains exception(s)

that handle errors in the program.

DECLARE

<declarations section>

BEGIN

<executable command(s)>

EXCEPTION

<exception handling>

END;

Example 'Hello World'

DECLARE

message varchar2(20):= 'Hello, World!';

BEGIN

dbms_output.put_line(message);

END;

5.2 PL/SQL– Variables

The name of a PL/SQL variable consists of a letter optionally followed by more letters, numerals,

dollar signs, underscores, and number signs and should not exceed 30 characters. By default,

variable names are not case-sensitive. You cannot use a reserved PL/SQL keyword as a variable

name.

Variable Declaration in PL/SQL

PL/SQL variables must be declared in the declaration section or in a package as a global variable.

When you declare a variable, PL/SQL allocates memory for the variable's value and the storage

location is identified by the variable name.

The syntax for declaring a variable is

variable_name [CONSTANT] datatype [NOT NULL] [:= | DEFAULT initial_value]

Initializing Variables in PL/SQL

Whenever you declare a variable, PL/SQL assigns it a default value of NULL. If you want to

initialize a variable with a value other than the NULL value, you can do so during the declaration,

using either ofthe following

 The DEFAULT keyword The assignment operator

For example −

counter binary_integer := 0;

greetings varchar2(20) DEFAULT 'Have a Good Day';

You can also specify that a variable should not have a NULL value using the NOT NULL

constraint. If you use the NOT NULL constraint, you must explicitly assign an initial value for

that variable.

It is a good programming practice to initialize variables properly otherwise, sometimes programs

would produce unexpected results. Try the following example which makes use of various types

of variables

 DECLARE

a integer := 10;

b integer := 20;

c integer;

f real;

BEGIN

c := a + b;

dbms_output.put_line('Value of c: ' || c);

f := 70.0/3.0;

dbms_output.put_line('Value of f: ' || f);

END;

/

Variable Scope in PL/SQL

PL/SQL allows the nesting of blocks, i.e., each program block may contain another inner block. If

a variable is declared within an inner block, it is not accessible to the outer block. However, if a

variable is declared and accessible to an outer block, it is also accessible to all nested inner blocks.

There are two types of variable scope

 Local variables − Variables declared in an inner block and not accessible to outer blocks.

 Global variables − Variables declared in the outermost block or a package.

Following example shows the usage of Local and Global variables in its simple form –

DECLARE

-- Global variables

num1 number := 95;

num2 number := 85;

BEGIN

dbms_output.put_line('Outer Variable num1: ' || num1);

dbms_output.put_line('Outer Variable num2: ' || num2);

DECLARE

-- Local variables

num1 number := 195;

num2 number := 185;

BEGIN

dbms_output.put_line('Inner Variable num1: ' || num1);

dbms_output.put_line('Inner Variable num2: ' || num2);

END;

END;

5.3 PL / SQL Data Types

Category Description

Scalar Single values with no internal components,

such as a NUMBER, DATE, or

BOOLEAN.

Large Object LOB Pointers to large objects that are stored

separately from other data items, such as text,

graphic images, video clips, and sound

waveforms.

Composite Data items that have internal components that

can be accessed individually. For example,

collections and records.

Reference Pointers to other data items.

Scalar Data types:

CHAR fixed length character data Char,varchar,raw nchar, long

VARCHAR 2 variable character length data

NUMBER Fixed or floating point numbers of

vitually any size

DECIMALprec, scale, NUMERICpre,

secale, FLOAT, INT, INTEGER,

SMALLINT, REAL

BINARY

INTEGER

Integers

DATE date values YEAR,MONTH,

DAY,HOUR,MINUTE,SECOND

BOOLEAN TRUE or FALSE Note: there is no

BOOLEAN data type in database table.

BINARY_INTEGER, BINARY_FLOAT,

BINARY_DOUBLE

Following is a valid declaration:

DECLARE

num1 INTEGER;

num2 REAL;

num3 DOUBLE PRECISION;

BEGIN

null;

END;

/

Composite Data types:

Table

1. Is similar but not the same as a database table

2. Must contain only one column of any scalar datatype

3. Is like a one-dimensional array of any size

4. Has its elements indexed with a binary integer column called the primary key of the table

Record

1. Contains uniquely defined columns of different data types,

2. Enables us to treat dissimilar columns that are logically related as a single unit.

5.4 PL/SQL Control Structures

Decision-making structures require that the programmer specify one or more conditions to be

evaluated or tested by the program, along with a statement or statements to be executed if the

condition is determined to be true, and optionally, other statements to be executed if the condition

is determined to be false.

1. if then statement

2. if then else statements

3. nested if-then statements

4. if-then-elseif-then-else ladder

Following is the general form of a typical conditional (i.e., decision making) structure found in

most of the programming languages

 PL/SQL programming language provides following types of decision-making statements.

Syntax

IF condition

THEN

Statement: {It is executed when condition is true}

END IF;

Eg:

declare

num1 number:= 10;

num2 number:= 20;

begin

if num1 > num2 then

dbms_output.put_line('num1 small');

end if;

dbms_output.put_line('I am Not in if');

end;

EG :

declare

num1 number:= 10;

num2 number:= 20;

num3 number:= 20;

begin

if num1 < num2 then

dbms_output.put_line('num1 small num2');

 if num1 < num3 then

 dbms_output.put_line('num1 small num3 also');

 end if;

 end if;

 dbms_output.put_line('after end if');

end;

5.5 PL/SQL - Cursors

Oracle creates a memory area, known as the context area, for processing an SQL statement, which

contains all the information needed for processing the statement; for example, the number of rows

processed, etc.

A cursor is a pointer to this context area. PL/SQL controls the context area through a cursor. A

cursor

holds the rows (one or more) returned by a SQL statement. The set of rows the cursor holds is

referred to as the active set.

You can name a cursor so that it could be referred to in a program to fetch and process the rows

returned by the SQL statement, one at a time.

There are two types of cursors −

 Implicit cursors

 Explicit cursors

Implicit Cursors

 Implicit cursors are automatically created by Oracle whenever an SQL statement is

executed, when there is no explicit cursor for the statement.

 Programmers cannot control the implicit cursors and the information in it.

 Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit

cursor is associated with this statement.

 For INSERT operations, the cursor holds the data that needs to be inserted.

 For UPDATE and DELETE operations, the cursor identifies the rows that would be

affected.

 Recent implicit cursor as the SQL cursor, which always has attributes such as %FOUND,

%ISOPEN, %NOTFOUND, and %ROWCOUNT.

 The SQL cursor has additional attributes, %BULK_ROWCOUNT and

%BULK_EXCEPTIONS, designed for use with the FORALL statement.

 The following table provides the description of the most used attributes –

 %FOUND Returns TRUE if an INSERT, UPDATE, or DELETE statement affected one

or more rows or a SELECTINTO statement returned one or more rows. Otherwise, it

returns FALSE.

 %NOTFOUND The logical opposite of %FOUND. It returns TRUE if an INSERT,

UPDATE, or DELETE statement affected no rows, or a SELECT INTO statement returned

no rows. Otherwise, it returns FALSE.

 %ISOPEN Always returns FALSE for implicit cursors, because Oracle closes the SQL

cursor automatically after executing its associated SQL statement.

 %ROWCOUNT Returns the number of rows affected by an INSERT, UPDATE, or

DELETE statement, or returned by a SELECT INTO statement.

DECLARE

total_rows number(2);

BEGIN

 UPDATE customers

 SET salary = salary + 500;

 IF sql%notfound THEN

dbms_output.put_line('no customers selected');

ELSIF sql%found THEN

total_rows := sql%rowcount;

dbms_output.put_line(total_rows || ' customers selected ');

END IF;

END;

When the above code is executed at the SQL prompt, it produces the following result −

6 customers selected

PL/SQL procedure successfully completed.

Explicit Cursors

Explicit cursors are programmer-defined cursors for gaining more control over the context area.

An explicit cursor should be defined in the declaration section of the PL/SQL Block.

 It is created on a SELECT Statement which returns more than one row.

The syntax for creating an explicit cursor is −

CURSOR cursor_name IS select_statement;

Working with an explicit cursor includes the following steps −

 Declaring the cursor for initializing the memory

 Opening the cursor for allocating the memory

 Fetching the cursor for retrieving the data

 Closing the cursor to release the allocated memory

Declaring the Cursor

Declaring the cursor defines the cursor with a name and the associated SELECT statement.

For example

 −CURSOR c_customers IS SELECT id, name, address FROM customers;

Opening the Cursor

Opening the cursor allocates the memory for the cursor and makes it ready for fetching the rows

returned by the SQL statement into it.

For example, we will open the above defined cursor as follows

 − OPEN c_customers;

Fetching the Cursor

Fetching the cursor involves accessing one row at a time. For example, we will fetch rows from

the above-opened cursor as follows

− FETCH c_customers INTO c_id, c_name, c_addr;

Closing the Cursor

Closing the cursor means releasing the allocated memory. For example, we will close the above-

opened cursor as follows

 − CLOSE c_customers;

Example

Following is a complete example to illustrate the concepts of explicit cursors &minua;

DECLARE

c_id customers.id%type;

c_name customerS.No.ame%type;

c_addr customers.address%type;

CURSOR c_customers is

SELECT id, name, address FROM customers;

BEGIN

OPEN c_customers;

LOOP

 FETCH c_customers into c_id, c_name, c_addr;

EXIT WHEN c_customers%notfound;

dbms_output.put_line(c_id || ' ' || c_name || ' ' || c_addr);

END LOOP;

CLOSE c_customers;

END;

When the above code is executed at the SQL prompt, it produces the following result −

1 Ramesh Ahmedabad

2 Khilan Delhi

3 kaushik Kota

4 Chaitali Mumbai

5 Hardik Bhopal

6 Komal MP

PL/SQL procedure successfully completed.

5.6 Iterative Control Statement

A loop statement allows us to execute a statement or group of statements multiple times and

following is the general form of a loop statement in most of the programming languages

BEGIN

 FOR i IN 1 .. 10 LOOP

 DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);

 END LOOP;

END;

Iteration # 1

Iteration # 2

Iteration # 3

Iteration # 4

Iteration # 5

Iteration # 6

Iteration # 7

Iteration # 8

Iteration # 9

Iteration # 10

A WHILE LOOP statement in PL/SQL programming language repeatedly executes a target

statement as long as a given condition is true.

Syntax

WHILE condition LOOP

 sequence_of_statements

END LOOP;

Example

DECLARE

 a number(2) := 10;

BEGIN

 WHILE a < 20 LOOP

 dbms_output.put_line('value of a: ' || a);

 a := a + 1;

 END LOOP;

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

value of a: 10

value of a: 11

value of a: 12

value of a: 13

value of a: 14

value of a: 15

value of a: 16

value of a: 17

value of a: 18

value of a: 19

PL/SQL procedure successfully completed.

5.7 PL/SQL Exception Handling

This section starts with the keyword EXCEPTION. This optional section contains exception(s)

that handle errors in the program.

DECLARE

 <declarations section>

BEGIN

 <executable command(s)>

EXCEPTION

 <exception handling>

END;

The 'Hello World' Example

DECLARE

message varchar2(20):= 'Hello, World!';

BEGIN

dbms_output.put_line(message);

END;

5.8 PL/SQL-Triggers

Triggers are stored programs, which are automatically executed or fired when some events occur.

Triggers are, in fact, written to be executed in response to any of the following events

 A database manipulation (DML) statement (DELETE, INSERT, or UPDATE)

 A database definition (DDL) statement (CREATE, ALTER, or DROP).

 A database operation (SERVERERROR, LOGON, LOGOFF, STARTUP, or

SHUTDOWN).

Triggers can be defined on the table, view, schema, or database with which the event is associated.

Benefits of Triggers

Triggers can be written for the following purposes −

 Generating some derived column values automatically

 Enforcing referential integrity

 Event logging and storing information on table access

 Auditing

 Synchronous replication of tables

 Imposing security authorizations

 Preventing invalid transactions

Creating Triggers

The syntax for creating a trigger is

− CREATE [OR REPLACE] TRIGGER trigger_name

{BEFORE | AFTER | INSTEAD OF }

{INSERT [OR] | UPDATE [OR] | DELETE}

[OF col_name]

ON table_name

[REFERENCING OLD AS o NEW AS n]

[FOR EACH ROW]

WHEN (condition)

DECLARE

Declaration-statements

BEGIN

Executable-statements

EXCEPTION

Exception-handling-statements

END;

Where,

 CREATE [OR REPLACE] TRIGGER trigger_name − Creates or replaces an existing

trigger with the trigger_name.

 {BEFORE | AFTER | INSTEAD OF} − This specifies when the trigger will be executed.

The

 INSTEAD OF clause is used for creating trigger on a view.

 {INSERT [OR] | UPDATE [OR] | DELETE} − This specifies the DML operation.

 [OF col_name] − This specifies the column name that will be updated.

 [ON table_name] − This specifies the name of the table associated with the trigger.

 [REFERENCING OLD AS o NEW AS n] − This allows you to refer new and old values

for

 various DML statements, such as INSERT, UPDATE, and DELETE.

 [FOR EACH ROW] − This specifies a row-level trigger, i.e., the trigger will be executed

for each row being affected. Otherwise the trigger will execute just once when the SQL

statement is

 executed, which is called a table level trigger.

 WHEN (condition) − This provides a condition for rows for which the trigger would fire.

This clause is valid only for row-level triggers.

Example

The following program creates a row-level trigger for the customers table that would fire for

INSERT orUPDATE or DELETE operations performed on the CUSTOMERS table.

This trigger will display the salary difference between the old values and new values

– CREATE OR REPLACE TRIGGER display_salary_changes BEFORE DELETE OR INSERT

OR UPDATE ON customers

FOR EACH ROW

WHEN (NEW.ID > 0)

DECLARE

sal_diff number;

BEGIN

sal_diff := :NEW.salary - :OLD.salary;

dbms_output.put_line('Old salary: ' || :OLD.salary);

dbms_output.put_line('New salary: ' || :NEW.salary);

dbms_output.put_line('Salary difference: ' || sal_diff);

END;

/

When the above code is executed at the SQL prompt, it produces the following result −

Trigger created.

5.9 PL/SQL- Procedures

A subprogram is a program unit/module that performs a particular task. These subprograms are

combined to form larger programs.

This is basically called the 'Modular design'. A subprogram can be invoked by another

subprogram or program which is called the calling program.

 A subprogram can be created –

 At the schema level

 Inside a package

 Inside a PL/SQL block

At the schema level, subprogram is a standalone subprogram. It is created with the

CREATEPROCEDURE or the CREATE FUNCTION statement. It is stored in the database and

can be deleted with the DROP PROCEDURE or DROP FUNCTION statement.

A subprogram created inside a package is a packaged subprogram. It is stored in the database and

can be deleted only when the package is deleted with the DROP PACKAGE statement.

PL/SQL subprograms are named PL/SQL blocks that can be invoked with a set of parameters.

PL/SQLprovides two kinds of subprograms −

 Functions − These subprograms return a single value; mainly used to compute and return a

value.

 Procedures − These subprograms do not return a value directly; mainly used to perform an

 action.

Parts of a PL/SQLSubprogram

Declarative Part

It is an optional part. However, the declarative part for a subprogram does not start with the

DECLARE keyword. It contains declarations of types, cursors, constants, variables, exceptions,

and nested subprograms. These items are local to the subprogram and cease to exist when the

subprogram completes execution.

Executable Part

This is a mandatory part and contains statements that perform the designated action.

Exception-handling

This is again an optional part. It contains the code that handles run-time errors.

Creating a Procedure

A procedure is created with the CREATE OR REPLACE PROCEDUREstatement. The simplified

syntax for the CREATE OR REPLACE PROCEDURE statement is as follows

− CREATE [OR REPLACE] PROCEDURE procedure_name

[(parameter_name [IN | OUT | IN OUT] type [, ...])]

{IS | AS}

BEGIN

< procedure_body >

END procedure_name;

Where,

 procedure-name specifies the name of the procedure.

 [OR REPLACE] option allows the modification of an existing procedure.

 The optional parameter list contains name, mode and types of the parameters. IN

represents the

 value that will be passed from outside and OUT represents the parameter that will be used

to

 return a value outside of the procedure.

 procedure-body contains the executable part.

 The AS keyword is used instead of the IS keyword for creating a standalone procedure.

Example

The following example creates a simple procedure that displays the string 'Hello World!' on the

screen when executed.

CREATE OR REPLACE PROCEDURE greetings

AS

BEGIN

dbms_output.put_line('Hello World!');

END;

/

When the above code is executed using the SQL prompt, it will produce the following result −

Procedure created.

Executing a Standalone Procedure

A standalone procedure can be called in two ways −

 Using the EXECUTE keyword

 Calling the name of the procedure from a PL/SQL block

The above procedure named 'greetings' can be called with the EXECUTE keyword as

EXECUTE greetings;

The above call will display − Hello World

PL/SQL procedure successfully completed.

The procedure can also be called from another PL/SQL block

 − BEGIN

greetings;

END;

/

The above call will display − Hello World

PL/SQL procedure successfully completed.

Deleting a Standalone Procedure

A standalone procedure is deleted with the DROP PROCEDURE statement. Syntax for deleting a

procedure is

 − DROP PROCEDURE procedure-name;

You can drop the greetings procedure by using the following statement

− DROP PROCEDURE greetings;

Methods for Passing Parameters

Actual parameters can be passed in three ways −

 Positional notationfindMin(a, b, c, d);

 Named notation

findMin(x => a, y => b, z => c, m => d);

 Mixed notation

findMin(a, b, c, m => d);

--

