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General method

• Divide and Conquer is an algorithmic pattern.

• Divide and conquer algorithm is a strategy of solving a large
problem by

1.breaking the problem into smaller sub-problems

2.solving the sub-problems, and

3.combining them to get the desired output.

• Here are the steps involved:

1.Divide: Divide the given problem into sub-problems using
recursion.

2.Conquer: Solve the smaller sub-problems recursively. If the
subproblem is small enough, then solve it directly.

3.Combine: Combine the solutions of the sub-problems that are
part of the recursive process to solve the actual problem.









• The Divide and Conquer algorithm is initially invoked as DAndC(P) where P 
is the problem to be solved.

• Small(P) is a Boolean valued function that determine whether the input size 
is small and answer can be computed with out splitting.

• If this is so then the function S is called.

• Otherwise P is divided in to smaller subproblems.

• The subproblems P1,P2…. Are solved by recursive applications of DAndC.

• Combine is a function that determines the solutions to P using the 
solutions to k subproblems.

• The computing time is described by recurrence relation

T(n)=       g(n)                                              n small

T(n1)+T(n2)…..+T(nk)+f(n)       Otherwise



• Where T(n)is the time for DAndC on any input of size n and g(n) is the time to 
compute for small inputs

• The function f(n) is the time to divide P and combining the solutions to sub 
problems

• The time complexity to solve such problems is given by a recurrence relation: –

• T( n) =     T(1)                               n=1

a·T(  n / b ) + f ( n )      n>1  

• Time to combine the solutions of the subproblems into a solution of the original 
problem. 

• Where a and b are constants.

• The method to solve such recurrence relation is called the substitution method.

• This method repeatedly makes substitution for each occurrence until all 
occurrence disappear.





Defective chess board problem

The Defective Chessboard problem, also known as the Tiling Problem is an 
interesting problem.

It is typically solved with a “divide and conquer” approach. 

The algorithm has a time complexity of O(n²).

A defective chess board is a 2^k*2^k board of squares with exactly one defective 
square.

When k=0,there is one possible defective chess board.

For any k there are exactly 2^2k defective chess boards.



The problem

• Given a n by n board where n is of form 2^k where k >= 1 (Basically, n is a power of 
2 with minimum value as 2). 

• We are required to tile the board using triominos. A triomino is an L-shaped tile in a 
2 × 2 block with one cell of size 1×1 missing.

Constraints

1.Tiling two triominoes may not overlap.

2.Triminoes should not cover defective square

3.Triominoes should cover all other squares.

So the number of triominoes used becomes (2^2k-1)/3.

When k=0 it has no defective square and number of triominoes is 0. 

When k=1, there are exactly three non defective squares and these squares are 
covered using a triomino as shown already.

The Algorithm

• As mentioned earlier, a divide-and-conquer (DAC) technique is used to solve the 
problem.

• DAC entails splitting a larger problem into sub-problems, ensuring that each sub-
problem is an exact copy of the larger one.





The method suggests reducing the problem of tiling a 2^k*2^k defective chess  
board to that of tiling smaller defective chess boards.

A natural partitioning of a 2^k*2^k chess board would be in to four 2^k-1*2^k-1 
chessboards

The above partitioning  can be done when k=2.







The recursion terminates when the chess board size has been reduced to 1*1.

The chess board’s only square is defective and no triminoes are to be placed.

Consider the divide and conquer alg. 

Small(P) is true when k=0(we are dealing with 1*1 defective chess 
board);dividing P into smaller instances is done by dividing P in to 2^k-1*2^k-
1.;combine the solutions obtained recursively for the four smaller requires no 
additional work.





The alg. Uses two global variable board and tile.

board is a two dimensional array that represents a chess board.             
board[0,0] represents the top left corner of chess board.

tile is a integer value with initial value 1

Initial invocation is TileBoard(0,0,dRow,dCol,Size)





Time complexity

t(k)=    d                   k=0

4t(k-1)+c    k>0

When k=0 size =1 and a constant d amount of time is spent.

When k>0 four recursive calls are made.The call take 4t(k-1) time.

We solve this by using substitution method.

t(k)=O(4^k)

=O(number of tiles needed)

O(1) time needed to place each tile and we cannot obtain an 
asymptotically faster alg than divide and conquer.





Binary Search
Let ai 1<=i<=n be a list of elements that are sorted in non decreasing order.

The problem is determining whether a element is present in the list or not.

If x is present we are to determine  a value j such that a
j
=x.

If x is not present the j is set with 0.

Divide and conquer is used to solve the problem.

Let P=(n,ai,…….al,x) denote a arbitrary instance of this search problem.

Let Small(P) be true if n=1.

In this case S(P) will take the value I if x=ai otherwise it is 0.

If P has more than one element then it is divided in to new sub problems as follows.

Pick an index q (in the range [i,l] and compare x with aq

There are three possibilities.

1.x=aq the problem P is immediately solved

2.x<aq; then x to be searched in the sublist ai,ai+1…..aq-1. Therefore p reduces to (q-1, ai,ai+1…..aq-
1,x)

3.x>aq then x to be searched in the sublist aq+1,……al. P reduces to (l-q,aq+1….al,x)



The given problem reduced to two sub problems and it take O(1) time.

After  a comparison with aq, the instance remaining to be solved using divide 
and conquer again.

If q is always chosen such that aq is the middle element (q=[n+1/2]) then the 
resulting search algorithm is known as binary search.

The answer to the new sub problem is also the problem to the original 
problem.









Comparisons between x and a[] are referred as element comparisons.

The number of comparisons needed to find each of the 14 element is

The average is obtained by summing the comparisons needed to find all items 
and dividing by 14

45/14=3.21 comparisons per successful search.

The average number of element comparisons for unsuccessful search  is 
(3+14 *4)/15=3.93

For a successful search the time complexity is O(log n)

For unsuccessful search the time complexity is Ɵ(log n)



Computing time of binary search algorithm for best, average and worst 
case is 

For successful search

Ɵ(1)-best case

Ɵ(log n)-average case

Ɵ(log n)-worst case

For unsuccessful search

Ɵ(log n)- for best,average and worst case 



Finding the maximum and minimum

1. Let us consider simple problem that can be solved by the divide-and conquer technique.

2. The problem is to find the maximum and minimum value in a set of ‘n’ elements.

3. By comparing numbers of elements, the time complexity of this algorithm can be analyzed.

4. Hence, the time is determined mainly by the total cost of the element comparison.



• Explanation:

• Straight MaxMin requires 2(n-1) element comparisons in the best, average & worst cases.

• By realizing the comparison of a [i]max is false, improvement in a algorithm can be done.

• Hence we can replace the contents of the for loop by, If (a [i]> Max) then Max = a [i]; Else 
if (a [i]< 2(n-1)

• On the average a[i] is > max half the time, and so, the avg. no. of comparison is 3n/2-1.

• The best case occurs when the elements are in increasing order and number of 
comparisons are n-1.

• The worst case occurs when the elements are in decreasing order and the number of 
comparisons are 2(n-1).



• A Divide and Conquer Algorithm for this problem would proceed as follows:

• a. Let P = (n, a [i],……,a [j]) denote an arbitrary instance of the problem.

• b. Here ‘n’ is the no. of elements in the list (a [i],….,a[j]) and we are interested in finding 
the maximum and minimum of the list.

• c. If the list has more than 2 elements, P has to be divided into smaller instances.

• d. For example, we might divide ‘P’ into the 2 instances, P1=([n/2],a[1],……..a[n/2]) & P2= ( 
n-[n/2], a[[n/2]+1],….., a[n]) .

• After having divided ‘P’ into 2 smaller sub problems, we can solve them by recursively 
invoking the same divide-and-conquer algorithm





Complexity:

If T(n) represents this no., then the resulting recurrence relations is

T (n)= T([n/2]+T[n/2]+2 n>2

1 n=2

1 n=1

When ‘n’ is a power of 2, n=2k for some positive integer ‘k’, then

T (n) = 2T(n/2) +2

= 2(2T(n/4)+2)+2

= 4T(n/4)+4+2

*

*
= 2k-1 T (2) + Σ 1 ≤ I ≤ k-1 ≤ 2i

= 2k-1+ 2k - 2

T(n) = (3n/2) – 2

Note that (3n/2) - 2 is the best-average and worst-case no. of comparisons when ‘n’ is a power of 2



1  2  3  4  5  6  7  8  9

22,13,-5,-8,15,60,17,31,47

i=j

1=9 false

i=j-1

1=8   false

mid=i+j/2

=1+9/2=5

mid=1+5/2=3

mid=6+9/2=7

mid=1+3/2=2

1  2  3  4  5  6  7  8  9

22,13,-5,-8,15,60,17,31,47 

1,9,60,-8

1,5,22,-8                                        6,9,60,17   

1,3,22,-5       4,5,-5,-8        6,7,60,17             8,9,47,31

1,2,22,13   3,3,-5,-5



Merge sort

Merge sort is a sorting technique based on divide and conquer technique.

With worst- case time complexity being Ο(n log n), it is one of the most 
respected algorithms.

Merge sort is one of the most efficient sorting.

Merge sort first divides the array into equal halves and then combines 
them in a sorted manner.

Steps

1.Divide: Divide the unsorted list into two sub lists of about half the size.

2.Conquer: Sort each of the two sub lists recursively until we have list 
sizes of length 1,in which case the list itself is returned.

3.Combine: Merge the two-sorted sub lists back into one sorted list.







• Example





Time complexity



Quick Sort

Quicksort is a divide-and-conquer algorithm. 

It works by selecting a 'pivot' element from the array and partitioning the 
other elements into two sub-arrays, according to whether they are less 
than or greater than the pivot. 

The sub-arrays are then sorted recursively. 

This can be done in-place, requiring small additional amounts 
of memory to perform the sorting.

It can be about two or three times faster than its main competitors, merge 
sort and heapsort.

https://en.wikipedia.org/wiki/Divide-and-conquer_algorithm
https://en.wikipedia.org/wiki/Recursion_(computer_science)
https://en.wikipedia.org/wiki/In-place_algorithm
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/Merge_sort
https://en.wikipedia.org/wiki/Heapsort






• https://www.gatevidyalay.com/tag/quick-sort-ppt/





Time Complexity

• To find the location of an element that splits the array into two parts, O(n) 
operations are required.

• This is because every element in the array is compared to the partitioning 
element.

• After the division, each section is examined separately.

• If the array is split approximately in half (which is not usually), then there will 
be log2n splits.

• Therefore, total comparisons required are f(n) = n x log2n = O(nlog2n).

Worst case

• Quick Sort is sensitive to the order of input data.

• It gives the worst performance when elements are already in the ascending 
order.

• It then divides the array into sections of 1 and (n-1) elements in each call.

• Then, there are (n-1) divisions in all.

• Therefore, here total comparisons required are f(n) = n x (n-1) = O(n2).



• Quick sort

• 1   2     3   4   5   6    7   8      9   10

• 65   70   75  80  85   60   55  50    45   *

• m=1 j=10    v=65

• i=i+1=1+1=2

• a[i]>=v

• 70>=65    true

• j=9

• a[j]<=v

• 45<=65   true

• 2<9 true 

• 65    45    75   80   85  60  55  50  70   *

• i=3

• 75 >=65   true

• j=8

• 50<=65   true

• 3<8   true  

• 65   45   50    80   85    60   55  75  70  *



• i=4

• 80>=65   true

• j=7

• 55<=65   true

• 4<=7

• 65    45    50    55   85  60   80   75  70   *

• i=5

• 85>=65  true

• j=6

• 60<=65  true

• 5<6  true

• 65   45   50   55   60  85   80  75    70  *

• i=6



• 85>=65   true

• j=5 

• 60<=65   true

• 6<5  false    no interchange

• a[m]=a[j]   a[j]=m     return j

• a[1]= 60    a[5]=65

• j=5

• 60     45    50   55  65  85   80   75  70    *

• 45    50   55   60   65   70   75    80   *



Selection Sort



This sorting algorithm is an in-place comparison- based algorithm .

In which the list is divided into two parts, the sorted part at the left end 
and the unsorted part at the right end. 

Initially, the sorted part is empty and the unsorted part is the entire list.

The smallest element is selected from the unsorted array and swapped 
with the leftmost element, and that element becomes a part of the sorted 
array. 

This process continues moving unsorted array boundary by one element 
to the right 

Each time selecting an item according to its ordering and placing it in the 
correct position in the sequence



1.The Selection Sort Algorithm 

For each index position i

Find the smallest data value in the array from positions i through length -
1 , where length is the number of data values stored. 

Exchange (swap) the smallest value with the value at position i.

Algorithm 

Step 1 − Set MIN to location 0

Step 2 − Search the minimum element in the list

Step 3 − Swap with value at location MIN 

Step 4 − Increment MIN to point to next element

Step 5 − Repeat until list is sorted

https://image.slidesharecdn.com/himanshukesharwani16a-171114180708/95/selection-sorting-6-638.jpg?cb=1510682879






• Important Notes-

• Selection sort is not a very efficient algorithm when data sets are large.

• This is indicated by the average and worst case complexities.

• Selection sort uses minimum number of swap operations O(n) among 
all the sorting algorithms.

•



• Strassen’s Matrix Multiplication

• Basic Matrix Multiplication 

void matrix_mult ()

{ 

for (i = 1; i <= N; i++)

{ 

for (j = 1; j <= N; j++)

{

for(k=1;k<=N;k++)

{ 

compute Ci,j; }

}} 







Divide and Conquer
Following is simple Divide and Conquer method to multiply two square 
matrices.
1) Divide matrices A and B in 4 sub-matrices of size N/2 x N/2 as shown 
in the below diagram.
2) Calculate following values recursively. ae + bg, af + bh, ce + dg and cf
+ dh.



• In the above method, we do 8 multiplications for matrices of size N/2 x 
N/2 and 4 additions. Addition of two matrices takes O(N2) time. So the 
time complexity can be written as



• Simple Divide and Conquer also leads to O(N3), can there be a 
better way?
In the above divide and conquer method, the main component for high 
time complexity is 8 recursive calls.

• The idea of Strassen’s method is to reduce the number of recursive 
calls to 7. 

• Strassen’s method is similar to above simple divide and conquer 
method 

• This method also divide matrices to sub-matrices of size N/2 x N/2 as 
shown in the above diagram, but in Strassen’s method, the four sub-
matrices of result are calculated using following formulae.






