DATABASE MANAGEMENT SYSTEM

FUNCTIONAL DEPENDENCIES

BY

A. ZULIGHA SHAFANA,

ASST.PROF., DEPARTMENT OF COMPUTER APPLICATIONS

JAMAL MOHAMED COLLEGE

Functional Dependencies

Introduction:

Basically a functional dependency (FD) is a many to one relationship from one set of attributes to another within a given relation.

Example:

Relation XY, there is a functional dependency from set of attributes $\{x\#,y\#\}$ to the set of attributes {Qty}.

• For any given value for the pair of attributes x# & y# there is just one corresponding value of attribute QTY, but many distinct values of the pair of attribute X# &Y# can have the same corresponding value for attribute QTY.

Definitions:

Let r be a relation, and let X and Y arbitrary subsets of the set of attributes of r. Then use say that Y is functionally dependent on X in symbols

X→Y

(read "X functionally determines Y")

Examples:

{emp#}→{ename}
{emp#,ename}→{salary}
{emp#}→{ename,salary}
Left-hand side of an FD called determinant
Right-hand side of an FD called dependent

Singular set :

As the definition indicates, the determinant and dependent are both set of attributes. When such a set contains just one attributes called Singular set.

Emp# \rightarrow ename (drop the set braces)

Trival and Non-trival Dependencies:

Definitions:

An FD is trival if and only if the Right-hand is a subset of the left-hand side.

 $\{ S\# , P\# \} \rightarrow S\#$

• Trival dependencies are not very interesting in practice, we are usually more interested non-trival.

Clousure of a set of dependies:

Transitive FD:

A relation R with three attributes A, B and C such that the FDs $A \rightarrow B$ and $B \rightarrow C$ both hold for r. Then it is easy to see that the FD $A \rightarrow C$ also hold for R. The FD $A \rightarrow C$ is a transitive FD-C is said to depend on A transitively, via B.

Example:

```
{emp#,ename}→{Grade, Salary Scale}
```