Semester Course Course Category Week Creatis	Marks for Evaluation			
Week CI	A ESE	Tota		
III 23UPHVAC1 Value Added Course – I 30 - -	100	100		

Course Title

RADIOGRAPHIC TESTING

SYLLABUS					
Unit	Contents	Hours			
	Radiographic Inspection - Basic Principles - General procedure for radiographic				
Ι	testing - Advantages, Disadvantages and Applications - Radiographic Inspection	6			
	techniques				
	Fundamental principles - Properties of radiations- Sources for radiographic testing				
II	- X ray machines - Gamma ray sources - Radiographic linear accelerators -	6			
	Betatron				
	Films for radiographic testing - Intensifying Screens - Film Processing -				
III	Penetrameters - types of image quality indicator(IQI) - Placement of	6			
	Penetrameters				
	Different forms of radiographic testing - Personal safety and radiation protection -				
IV	Applications of radiographic testing method - Range and limitations of	6			
	radiographic testing				
	Computed Tomography (CT) - Types of scanners - Analysis and inspection				
	techniques - Assembly - Void, crack and defect detection - Geometric	_			
V	dimensioning and toleranceanalysis - Image-based finite element methods -	6			
	Applications of CT- Computed radiography (CR)				

Text Book(s):

1. Patrick O. Moore, Richard H. Bossi, Frank A. Iddings, George C. Wheeler, Hand Book of Nondestructive Testing, American Society for Nondestructive Testing ,Third Edition

Reference Book(s):

1. Charles J. Hellier, Hand book of Nondestructive evaluation, McGraw-Hill

2. J.Prasad, C G K Nair, Nondestructive Testing, Tata McGraw-Hill Education Private Limited, Second Edition

Web Resource(s):

1. https://www.scribd.com/document/578358679/ME6019-NDT-LECTURE-NOTES-5

Course Outcomes							
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No. CO Statement							
CO1	interpret the principle and operation of radiographic testing of a material for flaw detection	K1&K2					
CO2	do the experiments in radiographic testing	K3					
CO3	effective check on the overall quality of the radiographic inspection	K4					
CO4	analyse the parameters and image quality	K4					
CO5	Estimate the detected flaws	K5					

Relationship Matrix:

Course	Pro	gramm	e Outco	omes (P	Os)	Programme Specific Outcomes (PSOs)					Mean Score of
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	2	2	2	2	2	2	3	1	1	2.0
CO2	1	3	2	3	2	3	2	2	3	1	2.2
CO3	1	2	3	2	2	2	2	3	2	1	2.0
CO4	2	2	2	1	3	1	2	2	3	1	1.9
CO5	1	2	3	2	1	2	3	2	2	1	1.9
Mean Overall Score										2.0	
Correlation										Medium	

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator: Dr. A. Mohamed Saleem

Semester	Course Code	Course Cotogomy	Hours/	Cradita	Marks for Evaluation			
	Course Code	Course Category	Week	Creans	CIA	ESE	Total	
V	23UPHVAC2	Value Added Course – II	30	-	-	100	100	
				•				

Course Title

TELESCOPE AND TECHNIQUES

SYLLABUS							
Unit	Contents	Hours					
I	Telescope Optics :Point Sources - Extended Images - Telescope Objectives - Eyepieces -Accessories - Star Diagonal - Solar Diagonal -Barlow Lens - Telecompressor -Filters - Interferometers - Mountings - Observatories and Observing Sites	6					
II	Modern Small Telescope Design : Introduction–Obtaining a Telescope–Making Your Own Telescope–Brief Survey of Commercially Produced Telescopes–Binoculars	6					
III	Positions in the Sky : Spherical Polar Coordinates - Celestial Sphere - Altitude and Azimuth – Rotation - Solar and Sidereal Days - Declination and Hour Angle – Time - Right Ascension and Declination - Other Coordinate Systems - Heliocentric Time - Julian Date - Spherical Trigonometry	6					
IV	Telescope Mountings : Introduction - Equatorial Mountings - Alt-Az Mountings - Other Types of Commercial MountingsMaking Your Own Mounting – Alignment - Setting Circles – Guiding - Modern Commercial Mountings	6					
V	Visual Observing : Introduction - General and Practical Considerations and Safety - Finding Objects - The Moon – The Planets - The Sun - Finding the Sun - Observing the Sun – Stars - Stellar Nomenclature – Magnitudes - Observing Stars - Nebulae and Galaxies - Daytime Observing - False Observations	6					

Text Book(s):

C. R. Kitchin, Telescopes and Techniques, Springer New York Heidelberg Dordrecht London, Third Edition, 2013

Reference Book(s):

C. R. Kitchin , Telescopes and techniques : an introduction to practical astronomy, Springer New York Heidelberg Dordrecht London, 2003

Web Resource(s):https://web.njit.edu/~cao/Phys320_L6.pdf

Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	Cognitive Level (K-Level)					
CO1	explain the telescope optics and different types of telescope mountings	K1 &K2				
CO2	construct their own telescope	К3				
CO3	discover the celestial objects through telescope	K4				
CO4	analyse the data acquired from the objects	K4				
CO5	estimate the periods of the objects	K5				

Relationship Matrix:

Course	Pro	gramm	e Outco	omes (P	Os)	Programme Specific Outcomes (PSOs)					Mean Score of
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	2	2	2	2	2	2	1	2.2
CO2	1	2	2	2	3	3	3	2	3	2	2.3
CO3	2	2	2	2	2	2	3	3	2	1	2.1
CO4	2	2	3	3	2	2	3	2	3	1	2.3
CO5	1	2	2	2	2	2	3	2	2	1	1.9
Mean Overall Score										2.16	
Correlation										Medium	

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator: Dr. A. Mohamed Saleem

Semester	Course Code	Course Cotogowy	Hours/ Credite		Marks for Evaluation			
	Course Code	Course Category	Week	Creatis	CIA	ESE	Total	
III	23PPHVAC1	Value Added Course – I	30	-	-	100	100	

Course Title

RADIOGRAPHIC TESTING

SYLLABUS					
Unit	Contents	Hours			
I	Radiographic Inspection - Basic Principles - General procedure for radiographic testing – Advantages, Disadvantages and Applications - Radiographic Inspection techniques	6			
II	Fundamental principles - Properties of radiations- Sources for radiographic testing - X ray machines - Gamma ray sources - Radiographic linear accelerators – Betatron	6			
III	Films for radiographic testing - Intensifying Screens - Film Processing - Penetrameters – types of image quality indicator(IQI) - Placement of Penetrameters	6			
IV	Different forms of radiographic testing - Personal safety and radiation protection - Applications of radiographic testing method - Range and limitations of radiographic testing	6			
V	Computed Tomography (CT) - Types of scanners - Analysis and inspection techniques – Assembly - Void, crack and defect detection - Geometric dimensioning and toleranceanalysis - Image-based finite element methods - Applications of CT- Computed radiography (CR)	6			

Text Book(s):

1. Patrick O. Moore, Richard H. Bossi, Frank A. Iddings, George C. Wheeler, Hand Book of Nondestructive Testing, American Society for Nondestructive Testing ,Third Edition

Reference Book(s):

1. Charles J. Hellier, Hand book of Nondestructive evaluation, McGraw-Hill

2. J.Prasad, C G K Nair, Nondestructive Testing, Tata McGraw-Hill Education Private Limited, Second Edition

Web Resource(s):

1. https://www.scribd.com/document/578358679/ME6019-NDT-LECTURE-NOTES-5

Course Outcomes							
Upon successful completion of this course, the student will be able to:							
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	interpret the principle and operation of radiographic testing of a material for flaw detection	K1&K2					
CO2	do the experiments in radiographic testing	К3					
CO3	effective check on the overall quality of the radiographic inspection	K4					
CO4	analyse the parameters and image quality	K4					
CO5	Estimate the detected flaws	K5					

Course Outcomes (COs)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean Score of
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	2	2	2	2	2	2	3	1	1	2.0
CO2	1	3	2	3	2	3	2	2	3	1	2.2
CO3	1	2	3	2	2	2	2	3	2	1	2.0
CO4	2	2	2	1	3	1	2	2	3	1	1.9
CO5	1	2	3	2	1	2	3	2	2	1	1.9
Mean Overall Score									2.0		
Correlation									Medium		

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator: Dr. A. Mohamed Saleem