Comeston	Course Code	Course Cotogowy	Hours/	Credits	Credite	Marks for Evaluati		
Semester	Course Code	Course Category	Week		CIA	ESE	Total	
III	24UPHVAC1	Value Added Course – I	30	-	-	100	100	
Course Title PHYSICS OF DOMESTIC ELECTRICAL APPLIANCES								

SYLLABUS				
Unit	Contents	Hours		
I	Iron Box Types - Non-Automatic - Automatic - Construction and Working -Steam Iron Box-Differences between Automatic and Non-Automatic Iron Box.	6		
п	Water Heater Water Heater – Function – Types – Electric Kettle – Immersion water heater – Construction and working – storage water heaters – pressure type – construction and working.	6		
Ш	Mixer Electric Mixer – Function – Construction – General Operating Instruction – Caution – Mixer Cleaning	6		
IV	Fan Electric Fan – Function – Terminology – Construction and Working of Ceiling &Table Fan –Exhaust Fan	6		
V	Trouble Shooting -Practicals General Fault findings and Remedies: Iron box –Water heater-Mixi-Fan	6		

Text Book(s):

A. Sumathi, R.Krishnakumar, P. Balasubramanian, K.S. Sampath Nagarajan, Electrical Machines and Appliances, Tamil NaduTextbook Corporation, 2011

Reference Book(s):

Service Manual-Electrical Home Appliances, GT Publications

Web Resource(s):

https://onlinecourses.swayam2.ac.in/nou23_ge80/preview

Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	CO Statement	Cognitive Level (K-Level)				
CO1	acquire knowledge about the fundamental principles and classification of electrical appliances.	K 1				
CO2	understand the efficiencies of various electrical home appliances.	K2				
CO3	analyze different working mechanisms of home appliances.	К3				
CO4	attain the ability to test various electrical home appliances.	K4				
CO5	be capable of troubleshootingavariety of problems and issues in electric home appliances.	K5				

Course Coordinators:

Dr. S. Abbas Manthiri

Dr. S. Shek Dhavud

Mr. S. Mohamed Ibrahim Sulaiman Sait

Dr. C. Hariharan

Dr. L. Umaralikhan

Dr. P. Revathi

Dr. V. Kalyanavalli

Semester	Course Code	Canaga Catagami	Hours/	Credits	Marks for Evaluation			
	Cou	ourse Code	Course Category	Week	Creans	CIA	ESE	Total
V	24UPHVAC2		Value Added Course – II	30	ı	-	100	100
Course Title SENSORS AND THEIR APPLICATIONS								

SYLLABUS				
Unit	Contents	Hours		
I	Temperature Sensors Oral thermometer - Indoor/Outdoor Thermometer - Thermocouples-Thermistor - Semiconductor P-N Junction Sensors - Acoustic Temperature Sensor	6		
II	Pressure Sensors and Light Sensors Piezoresistive Diaphragm - Capacitive Touch Diaphragm - Photoresistor Sensor - Solar Cell – Phototransistors	6		
III	Position Transducers Potentiometric Sensors - Gravitational Sensors - Capacitive Sensors - Inductive and Magnetic Sensors: LVDT and RVDT - Eddy Current Sensors - Transverse Inductive Sensor	6		
IV	Optical, Ultrasonic and Radar Sensors Optical Bridge - Proximity Detector with Polarized Light - Ultrasonic Sensors— Micropower Impulse Radar	6		
V	Thickness, Level Sensors and Accelerometers Ablation Sensors - Liquid-Level Sensors - fuel level gauge - Capacitive Accelerometers - Piezoresistive Accelerometers	6		

Text Book(s):

- 1. W. Altmann, "Practical Process Control for Engineers and Technicians", Newens, 2005.
- 2. J.luecke, "Analog and Digital Circuits for Electronic Control System Applications", Newens, Elsevier Inc, 2005.

Reference Book(s):

1. J.s. Wilson, edited, "Sensor Technology Handbook", Newens, Elsevier Inc, 2005.

Web Resource(s):

https://www.vbspu.ac.in/e-content/Vishal-Yadav/Sensors.pdf

Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	CO Statement	Cognitive Level (K-Level)				
CO1	understand concepts in common methods for converting a physical parameter into an electrical quantity	K1				
CO2	explain with examples of transducers, including those for the measurement oftemperature, strain, motion, position, and light	K2				
CO3	comparing different standards and guidelines to make sensitivemeasurements of physical parameters	K2&K3				
CO4	categorize the different types of sensors used in real-life applications and paraphrase theirimportance	K4				
CO5	testing strategies to evaluate performance characteristics of different types of sensors and transducers	К5				

Course Coordinators:

Dr. J. Ebenezar

Dr. A. Abbas Manthiri

Dr. A. S. Haja Hameed

Mrs. M. Ayisha

Mrs. M. Shobanambigai

Mrs. G. Pragadeeswari

Comeston	Course Code	Carries Catagory	Hours/	Credits	Marks for Evaluation		
Semester	Course Code	Course Category	Week	Credits	CIA	ESE	Total
III	24PPHVAC1	Value Added Course – I	30	ı	-	100	100
Course Title MICRO ELECTRO MECHANICAL SYSTEM (MEMS)							

SYLLABUS				
Unit	Contents	Hours		
I	MEMS AND MICROSYSTEMS Introduction Microsystem - Microsystems and Microelectronics - Comparison of Microelectronics and Microsystems - Microsensors: Biomedical Sensors and Biosensors - Chemical Sensors	6		
II	MICROACTUATION Actuation using thermal forces, shape memory alloys, piezoelectric crystals, and electrostatic forces–Micromotors – Microvalves - Microaccelerometers	6		
Ш	MEMS FABRICATION LIGA Process - Bulk Micromachining - Surface Micromachining - Etching: Wet Etching - Dry Etching - Plasma Etching - Deep Reactive Ion Etching (DRIE)	6		
IV	MICROSYSTEM DESIGN Design constraints - Selection of materials - Selection of Manufacturing Process- Signal mapping and transduction - Electromechanical systems	6		
V	MEMS PACKAGING Ceramic packages - Multilayer packages - Embedded overlay - Wafer-level packaging - Microshielding and Self-packaging	6		

Text Book(s):

Nadim Maluf, "An introduction to Microelectro mechanical system design", Artech House, 2000

Reference Book(s):

Luis Castañer, Understanding MEMS: Principles and Applications, Wiley Publication, Edition 2015

Web Resource(s):

- 1. https://sist.sathyabama.ac.in/sist_coursematerial/uploads/SECA3007.pdf
- 2. https://www.wiley.com/en-us/Understanding+MEMS%3A+Principles+and+Applications-p-9781119055495
- $3. \ https://www.chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://application.wiley-vch.de/vch/journals/2081/books/2081_rel_title_varadan.pdf$

Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	CO Statement	Cognitive Level (K-Level)				
CO1	understand the working principles of MEMS and Microsystem and their application in the medical field.	K1&K2				
CO2	develop in-depth knowledge in existing or emerging areas of the field of device engineering, circuit design, lithography	К3				
CO3	analyze the applications such as physical sensors and biomedical systems,	K4				
CO4	explain and evaluate various MEMS fabrication techniques.	K5				
CO5	expertise to design, fabricate, test, and package sensors and actuators of micro-scale using conventional semiconductor technologies and other emerging technologies	К6				

Course Coordinator:

Dr. N. Peer Mohamed Sathik

Dr. R. Radhakrishnan

Major. F. S. Muzammil

Dr. R. Raj Muhamed

Mr. J. Umar Malik

Ms. R. Gowthar