DEPARTMENT OF MATHEMATICS

COURSE STRUCTURE & SYLLABI (For the students admitted from year 2023-2024 onwards)

Programme : M.Phil. Mathematics

JAMAL MOHAMED COLLEGE (AUTONOMOUS)

Accredited with A++ Grade by NAAC (4th Cycle) with CGPA 3.69 out of 4.0 (Affiliated to Bharathidasan University) **TIRUCHIRAPPALLI – 620 020**

M.Phil. MATHEMATICS

a		Course		Ins.	a u	Marks		T (1		
Sem	Course Code	Category	Course Title	Hrs/ Week	Credit	CIA	ESE	Total		
	23MPMA1CC1	Core - I	Research Methodology	4*	4	25	75	100		
	23MPMA1CC2	Core - II	Analysis and Applied Mathematics	4*	4	25	75	100		
	23MPMA1CC3	Core - III	Teaching and Learning Skills (Common Paper)	4*	4	25	75	100		
I	23MPMA1CC4	Core - IV (Elective)	Paper on Topic of Research (The syllabus will be prepared by the guide and examination will be conducted by the COE)		4	25	75	100		
	*One hour library for each course									
			Total	16	16			400		
II	23MPMA2PD		Dissertation#	-	8	_	200	200		
			Grand Total	16	24			600		

Evaluation of the Dissertation Viva voce shall be made jointly by the Research Supervisor and the External Examiner.

Somostor	Course Code	Course Category	Hours/	Credits	Marks for Evaluation			
Semester	Course Coue	Course Category	Week		CIA	ESE	Total	
Ι	23MPMA1CC1	CORE – I	4	4	25	75	100	

Course Title

Research Methodology

SYLLABUS						
Unit	Contents	Hours				
Ι	Research Methodology: An introduction – *Defining the research problem* – Research design.	12				
II	Noetherian modules – Primary decomposition – Artinian modules	12				
III	Real Analysis: Vector spaces – Integration as a linear functional - Topological preliminaries – Regularity properties of Borel measures.	12				
IV	Complex Measures: Total variation – Absolute – *Continuity* - Consequences of the Random Nikodym theorem - Bounded linear functional of \square^p - Riesz representation Theorem.	12				
V	Homotopy of paths – The Fundamental group – Covering spaces	12				
VI	Current trends (For CIA only) – Contemporary developments related to the co during the semester concerned.	urse				

..... Self Study

Text Books:

- **1.** C.R.Kothari, Research Methodology, New Age International Publishers, Second Revised Edition Reprint, 2009.
- 2.N. S. Gopalakrishnan, Commutative Algebra, Oxonian Press Private Ltd, NewDelhi, Second Edition, 1988.
- 3.Walter Rudin, Real & Complex Analysis, Tata McGraw-Hill Publishing Company Limited, Third Edition(2006).
- 4. James R. Munkres, Topology a First Course, Prentice Hall of India Learning Private Ltd. 2009.

UNIT I	Chapter I, I	I & III Page No. 1 –54	T.B-1
UNIT II		Sections $3.1 - 3.3$	T.B-2
UNIT III	Chapter 2	Sections 2.1 - 2.13, 2.15-2.18	T.B-3
UNIT IV	Chapter 6	Sections 6.1 - 6.19 (Page No.124-142)	T.B-3
UNIT V	Chapter 9	Sections 51,52,53	T.B-4

Reference Books:

1.David S. Dummit and Richard M. Foote, Abstract Algebra, Wiley-Student Edition, India, Second Edition, 2009.

- 2. G. De. Barra, Measure Theory and Integration, New Age International (P) Ltd., New Delhi, Reprint, 2009.
- 3. P. R. Halmos, Measure Theory, D. Van Nostrand Company Inc, Princeton N.J., 1950.
- 4. Serge Lang, Algebra, Addition- Wesley Publishing Company, Sydney, London, Second Edition (1970).
- 5. Tom M. Apostol, Mathematical Analysis, Narosa Publishing House, Second Edition, 2002.

Web Resources:

1. https://archive.nptel.ac.in/courses/127/106/127106227/

2. https://archive.nptel.ac.in/content/storage2/courses/downloads_new/111108135/noc20-ma02_Week_10_Assignment_01.pdf

	Course Outcomes							
Upon suc	Upon successful completion of this course, the student will be able to:							
CO No.	CO Statement	Cognitive Level (K-Level)						
CO1	understand the proposed research problem of research design.	K2						
CO2	apply the concept of Noetherian modules, Primary decomposition and Artinian modules	К3						
CO3	analyse domain knowledge of topological preliminaries and regularity properties of Borel measures.	K4						
CO4	evaluate on a total variation, Consequences of the Random Nikodym theorem and Riesz representation theorem.	К5						
CO5	create the examples of fundamental group and Covering spaces	K6						

Course	Programme Outcomes (POs)				Programme Specific Outcomes (PSOs)					Mean Score of	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	-	3	3	-	-	3	-	-	3	3	1.5
CO3	3	-	3	3	-	3	-	3	3	-	1.8
CO4	-	3	-	3	3	-	3	3	-	3	1.8
CO5	3	3	-	-	3	-	3	-	3	-	1.5
Mean Overall Score										1.92	
Correlation										Medium	

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinators:

- Dr. S. Shajitha Begum
- Dr. S. Mohamed Yusuff Ansari

Dr. A. Prasanna

Somester	Course Code	Course Cotogory	Hours/	Credita	Marks for Evaluation			
Semester	Course Coue	Course Category	Week	Creatis	CIA	ESE	Total	
Ι	23MPMA1CC2	CORE – II	4	4	25	75	100	

Course Title

Analysis and Applied Mathematics

	SYLLABUS						
Unit	Contents	Hours					
I	Functional Analysis : *General preliminaries on Banach Algebras*: The definition and some examples – Regular and singular elements – Topological divisors of zero. The Spectrum – The formula for the spectral radius – the radial and semi – simplicity. The structure of commutative Banach Algebra: The Gelfand mapping – Application of the formula $r(x) = \lim x $ - Involution in Banach Algebra. The Gelfand – Neumark theorem	12					
П	Differential Equation (Linear and Non-Linear systems): Uncoupled linear systems – Diagonalization – Exponential of operators – The fundamental theorem for linear systems – linear system in R ² – Complex Eigen values - Multiple Eigen Values - Some preliminary concepts and definitions – The fundamental existence – Uniqueness theorem.	12					
III	Domination: The domination number of graph - Exploration - Stratification	12					
IV	Mathematics of Cryptography: Introduction – Integer Arithmetic- Modular Arithmetic – Matrices – Linear Congruence. Traditional Symmetric-key. Ciphers: Introduction – Substitution Ciphers – Transposition Ciphers – Stream and Block Ciphers.	12					
V	Fuzzy Graph: *Paths and Connectedness*- Fuzzy Bridges and Fuzzy Cut nodes- Fuzzy Forests and Fuzzy Trees.	12					
VI	I Current trends (For CIA only) – Contemporary developments related to the course during the semester concerned						
*	* Self Study						

Text Books:

1.	G.F.Simmons,	Introduction to	Topology	and Modern	Analysis,	McGraw	Hill	Internatio	nal
	Edition, Fifte	enth Reprint, 20)11.						

- **2.** L.Perko, Differential Equations and Dynamical Systems, Springer International Edition, Third Edition, 2009.
- **3.** Gary Chartrand and PingZhang, Introduction to Graph Theory, McGraw Hill, International Edition, 2005.
- **4.** Behrouz A. Forouzan and Debdeep Mukhopadhyay, Cryptography and Network Security, Tata McGraw Hill Education Private Limited, New Delhi, Second Edition,2010.
- **5.** A.Nagoor Gani and V. T. Chandrasekaran, A first look at Fuzzy Graph Theory, Allied Publishers Pvt. Ltd. Chennai, First Edition ,2010.

UNIT I	Chapter 12	Sections 64 - 69(Page No. 301 to 317)	
	Chapter 13	Sections 70 - 73 (Page No. 318 to 326)	T.B-1
UNIT II	Chapter 1	Sections 1.1 - 1.7	
	Chapter 2	Sections 2.1 - 2.2	T.B-2
UNIT III	Chapter 13	Sections 13.1 and 13.2	T.B-3
UNIT IV	Chapter 2	Sections 2.1 - 2.4	
	Chapter 3	Sections 3.1, 3.4	T.B-4
UNIT V	Chapter 3	Sections $3.1 - 3.3$	T.B-5

Reference Books:

- 1. Balmohan V Limaye, Functional Analysis, New Age International (P) Ltd. New Delhi, Second Edition ,2009.
- 2. M.Murugan, Topics in Graph Theory and Algorithms, Muthali Publishing House, Annanagar, Chennai, First Edition ,2003.
- 3. William Stallings, Cryptography and Network Security, Dorling Kindersley India Pvt. Ltd, Fifth Edition, 2011.

Web Resources:

- 1. https://archive.nptel.ac.in/courses/111/105/111105037/
- 2. https://www.digimat.in/nptel/courses/video/111106102/L19.html

	Course Outcomes							
Upon suc	Upon successful completion of this course, the student will be able to:							
CO No.	CO Statement	Cognitive Level (K-Level)						
CO1	understand the Gelfand mapping theorem and Gelfand – Neumark theorem	K2						
CO2	apply the concepts of Linear and Non-Linear systems of Differential Equations in various problems.	К3						
CO3	analyse the domain knowledge on the domination number of graph, Exploration and Stratification.	K4						
CO4	evaluate the modular arithmetic and ciphers.	K5						
CO5	create the Fuzzy Graph: Paths and Connectedness- Fuzzy Bridges and fuzzy cut nodes- Fuzzy Forests and Fuzzy Trees.	K6						

Relationship Matrix:

Course	Pro	Programme Outcomes (POs)Programme Specific Outcomes (PSOs)							Mean		
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs
C01	3	3	-	3	3	3	-	3	3	3	2.4
CO2	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	-	3	3	3	-	3	3	-	2.1
CO4	3	3	-	3	3	3	3		3	3	2.4
CO5	-	-	3	3	-	-	3	3	-	3	1.5
Mean Overall Score									2.28		
Correlation									Medium		

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. A. Mohamed Ismayil Dr. P. Muruganantham Dr. R. Jahir Hussain Dr. A. Prasanna Dr. A. Nagoor Gani

Somester	Course Code	Course Cotogowy	Hours/	Credita	Marks for Evaluation		
Semester	Course Coue	Course Category	Week	Credits	CIA	ESE	Total
Ι	23MPMA1CC3	CORE – III	4	4	25	75	100

Course Title

Teaching and Learning Skills

	SYLLABUS	
Unit	Contents	Hours
I	Learning in higher education: What is Learning? - Learning Hierarchy – Information Processing – Learning Events – Learning Outcomes – Motivation. Teaching technology –Designs: Technology – *Teaching Technology* – Instructional Technology and Education Technology – Instructional Designs – Combination of Teaching Strategies and Instructional Designs.	12
II	Teaching technology Large groups: Psycho – Dynamics of Group Learning – Lecture Method – Modified Forms of Lecture – Seminar – Symposium – Panel Discussion – Team Teaching – Project Approach – Workshop. Teaching in small groups: Small Group Instruction – *Group Discussions* – Simulation Approach – Role Playing - Buzz Group Technique – Brainstorming – Case Discussions – Assignment.	12
III	Class room management: Teacher and Class Room Management – Class Room Management: A Conceptual Analysis – Discipline – A component of Class Room Management – Strategies for Class Room Management – Behavior Problems of Students in Colleges – Human Relations in Educational Institutions. Professional Growth: Need and Importance of Professional Growth – Professional Ethics.	12
IV	Communication skills: Introduction to life skills – Communication – Emotional – Functional – Personality skills. Public speaking – Welcome speech- Introducing guests – Vote of Thanks – Speech on current topics like use of cell phones, beauty contests, pollution etc., Personality Development Soft skills – Body language – Goal setting – Positive attitude – Emotional intelligence, leadership qualities – Problem solving Conversation in selected context – Introduction, permission, request, offer, greetings, sympathy, apology, suggestion, permission, telephonic conversation, compliant, warning, gratitude. Communication for career – Preparation – Resume- Group Discussion - Interview – standard , Panel, walk-in, group, stress, mock interview (practice)	12
V	MATLAB: Introduction - What is MATLAB? – Does MATLAB do symbolic calculations? – Will MATLAB Run on My Computer? – Where do I get MATLAB? – Basis of MATLAB: MATLAB windows – Online help – Input output, File types. Tutorial Lessons: A minimum MATLAB session – creating and working with arrays of numbers – creating and printing simple plots – creating, saving and executing a script file. Applications: Linear Algebra – curve fitting interpolation – Numerical Integration – Ordinary differential equation.	12
VI	Current trends (For CIA only) – Contemporary developments related to the co during the semester concerned.	ourse
*		

..... Self Study

Text Books:								
1. E.C. Vedanayagam, Teaching Technology For College Teachers, Striling Publishers Private								
Limited, 198	Limited, 1988.							
2. K. Alex, Sof	t Skills, S.	Chand &	company Ltd., New Delhi, First Editi	on, 2009.				
3. Rudra Pratap	, Getting S	Started with	h MATLAB 7, Oxford University Pro	ess, 2006.				
UNIT I	Chapter	2 and 3		T.B –1				
UNIT II	Chapter	4 and 5		T.B–1				
UNIT III	Chapter	8 and 12		T.B –1				
UNIT IV				T.B–2				
UNIT V	Chapter	1	Sections 1.1 - 1.4 and 1.6 - 1.6.5					
	Chapter	2	Sections 2.1 - 2.4					
	Chapter	3	Sections 5.1 - 5.5	T.B–3				

Reference Books:

1. Brian R. Hunt, Ronald L. Lipsman, Jonathan. M. Rosenberg, A Guide to MATLAB for Beginners and Experienced Users, Cambridge University Press, Reprint 2008.

2. Cheryl Hamilton, Communicating for results, Wads Worth cenage learning, Ninth Edition, USA, 2005.

3. Leena Sen, Verbal and non-verbal communication, Eastern Economy Editions, Prentice Hall of India

Learning, Second Edition, 2011.

4. S.A.W.Bukari, Soft Skills Competencies for Success, Sanjee Book House, Trichy 2009.

Web Resource:

1. <u>https://onlinecourses.nptel.ac.in/noc20_ge21/preview</u>

2. https://onlinecourses.nptel.ac.in/noc20_ge05/preview

Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	CO Statement	Cognitive Level (K-Level)				
CO1	understand the effective teaching methods for classroom management.	K2				
CO2	apply the domain knowledge of teaching and technology in Lecture, Seminar, Symposium, Panel Discussion, Team Teaching, Project and workshop.	К3				
CO3	analyse the variety of Teaching - learning strategies, Instructional Designs in higher education	K4				
CO4	demonstrate pursuit of knowledge as a character formation and interpersonal skills.	K5				
CO5	create the MATLAB software's for Problem Solving.	K6				

Course	Pro	gramm	e Outco	omes (P	Os)	Programme Specific Outcomes (PSOs)					Mean Score of
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	3	3	3	3	3	3	3	3	3
CO3	3	3	-	3	3	3	3	3	-	3	2.4
CO4	3	3	-	3	3	3	3	3	3	3	2.7
CO5	3	3	3	3	-	3	3	3	-	3	2.4
Mean Overall Score								2.7			
Correlation								High			

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥2.5	High

Course Coordinator:

- Dr. R. Jahir Hussain
- Dr. M. Mohammed Jabarullah
- Dr. A. Mohamed Ismayil

Someston	Course Code	Course Cotogory	Hours/	Credita	Marks for Evaluation			
Semester	Course Coue	Course Category	Week	Creatis	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	

Course Title

Codes And Cryptography

SYLLABUS					
Unit	Contents	Hours			
Ι	Introduction – Entropy – * Coding* - Efficient codes - Compression	12			
II	Information capacity -Fano's inequality- Shannons's noisy coding theorem	12			
III	Linear codes -Cyclic codes -BCH codes -Linear feedback shift Registers	12			
IV	Cryptography -Symmetric and Asymmetric Ciphers –Complexity -Public Key Ciphers	12			
V	Discrete Logarithm Ciphers –*Signatures* -Bit Commitment -Quantum Cryptography	12			
*	* Self Study	•			

Text Books:

T.K.Carne., "Codes & Cryptography", Applications & Algorithms, Department Of Mathematics., University of Cambridge, Notes Michaelmas ,2007.

UNIT I	Chapter	1 to	5
UNIT II	Chapter	8 to	10
UNIT III	Chapter	11 to	14
UNIT IV	Chapter	15 to	18
UNIT V	Chapter	19 to	22

Reference Books:

- 1. W.W. Adams and L.J. Goldstein, "Introduction to Number Theory", Englewood Cliffs, N.J. Prentice-Hall of India ,1976.
- 2. G.AKL, "On the security of Compressed Encoding," Advance in Cryptology: Proceedings of Cryptology: Proceedings of Crypto 83, Plenum Press ,1984.
- 3. Bruce Schneier, "Applied Cryptography", Second Edition, John Wiley & Sons, Inc ,2001.
- 4. Johannes. A. Buchmann, "Introduction to Cryptography", Springer, Second Edition, 2004.

Web Resources:

- 1. https://nptel.ac.in/courses/108102117
- 2. <u>https://onlinecourses.nptel.ac.in/noc23_cs04/preview</u>

	Course Outcomes					
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	CO Statement	Cognitive Level (K-Level)				
CO1	understand the study on the entropy and Efficient codes.	K2				
CO2	apply and solve Fano's inequality and Shannons's noisy coding theorem	K3				
CO3	analyse and classify of linear codes, Cyclic codes and BCH codes.	K4				
CO4	evaluate and classify cryptography, Symmetric and Asymmetric Ciphers.	K5				
CO5	create the discrete logarithm ciphers	K6				

Pro	gramm	e Outco	omes (P	Os)	Programme Specific Outcomes (PSOs)					Mean Score of
PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
3	3	0	3	3	3	0	0	3	3	2.1
3	3	3	0	3	3	0	3	0	3	2.1
0	0	3	3	3	0	3	3	3	0	1.8
3	0	3	3	3	3	0	3	0	3	2.1
3	3	0	3	3	3	3	0	3	3	2.4
Mean Overall Score								2.1		
Correlation								Medium		
	Pro PO1 3 3 0 3 3	Prosramm PO1 PO2 3 3 3 3 0 0 3 0 3 3 0 0 3 3 0 0 3 3 0 0 3 0 3 3	Programme Outco PO1 PO2 PO3 3 3 0 3 3 3 0 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 3 0	Prosramme Outcomes (P PO1 PO2 PO3 PO4 3 3 0 3 3 3 3 0 0 0 3 3 3 0 3 3 3 0 3 3 3 0 3 3 3 0 3 3 3 0 3 3 3 3 0 3	Programme Outcomes (POs) PO1 PO2 PO3 PO4 PO5 3 3 0 3 3 3 3 0 3 3 0 0 3 3 3 3 0 3 3 3 3 0 3 3 3 3 0 3 3 3 3 0 3 3 3 3 0 3 3 3 4 0 3 3 3 3 3 0 3 3 3 3	Programme Outcomes (POs) Programme PO1 PO2 PO3 PO4 PO5 PS01 3 3 0 3 3 3 3 3 3 0 3 3 3 3 0 0 3 3 3 0 3 3 3 0 3 3 3 0 3 3 0 3 0 3	Programme Outcomes (POs) Programme Signame Signa	Programme Outcomes (POs) Programme Specific Os PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 3 3 0 3 3 0 0 0 3 3 0 3 3 0 0 0 3 3 0 3 3 0 3 3 0 0 3 3 0 3 3 0 3 3 0 3 0 0 3 3 3 0 3 3 0 3 3 0 3 3 3 0 3 3 0 3 3 0 3 3 3 3 0 3 3 0 3 3 0 3 3 3 3 0 3 3 3 0 3 3 3 3 0 3 3 3 0 3 3 3 3 0 3	Programme Outcomes (POs) Programme Specific Outcomes PO1 PO2 PO3 PO4 PO5 PS01 PS02 PS03 PS04 3 3 0 3 3 0 0 3 3 3 0 3 3 0 3 3 3 3 0 3 3 0 3 3 0 0 3 3 0 3 3 0 3 3 3 0 3 3 0 3 3 0 0 0 3 3 3 0 3 3 0 3 0 3 3 3 0 3 3 0 3 0 3 3 3 3 3 0 3 3 3 0 3 3 3 3 0 3 3 3 0 3 3 3 3 0 3 4 5 5 <td< td=""><td>Programme Specific Oversite Oversite PSOS PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 3 3 0 3 3 0 3 3 3 3 3 0 3 3 0 0 3 3 3 3 0 3 3 0 3 3 3 0 0 3 3 0 3 3 0 3 3 0 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 3 0 3 3 0 3 3 0 3 3 3 3 3 0 3 3 3 3 0 3 3 3 3 0 3 3 3 3 0 3 3 3 3 0 3 3 3 3</td></td<>	Programme Specific Oversite Oversite PSOS PO1 PO2 PO3 PO4 PO5 PSO1 PSO2 PSO3 PSO4 PSO5 3 3 0 3 3 0 3 3 3 3 3 0 3 3 0 0 3 3 3 3 0 3 3 0 3 3 3 0 0 3 3 0 3 3 0 3 3 0 0 3 3 0 3 3 0 3 3 0 3 3 0 3 3 3 0 3 3 0 3 3 0 3 3 3 3 3 0 3 3 3 3 0 3 3 3 3 0 3 3 3 3 0 3 3 3 3 0 3 3 3 3

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. M. Mohammed Jabarullah

Comestan	Course Code	Course Cotogowy	Hours/	Credita	Marks for Evaluation			
Semester	Course Coue	Course Calegory	Week	Creatis	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	

Course Title

Network Optimization & Genetic Algorithms

SYLLABUS				
Unit	Contents	Hours		
Ι	Various classes of network optimization problems-*Various classes of shortest path problems*-Notations-Terminology-Generalization of modified Yen's algorithm- New MOSPP Algorithm.	12		
II	Polynomial time algorithms for an MOSPP using various mean concepts - *Arithmetic mean concept* - Solving an MOSPP in a network by Dijkstra's algorithm using non - dominated arithmetic mean vector concept - Solving an MOSPP in a network by Yen's algorithm using non-dominated arithmetic mean vector concept - Solving an MOSPP by single objective version of new MOSPP algorithm using non - dominated arithmetic mean vector concept - Numerical illustrations	12		
III	Non-linear mean concepts-Introduction- Best compromise vector based on non- linear means- Best compromise vector based on centroidal mean- Best compromise vector based on contra harmonic mean- Theorem - Principle of optimality- Numerical illustrations.	12		
IV	Genetic algorithms: History- Basic concepts- Creation of Off springs- Working principle- Encoding- Fitness function- Reproduction.	12		
V	Inheritance operators - Cross over - Inversion and deletion- Mutation operator - Bit-wise operators- Bit-wise operators used in GA- Generational cycle- Convergence of genetic algorithm- Applications- Multi-level optimization- Real life problem- Differences and similarities between GA and other traditional methods- Advances in GA.	12		

..... Self Study

Text Books:

1. S. Ismail Mohideen, A Text Book of Network Optimization Problems, First Edition, 2011.

2. S. Rajasekaran and G. A. Vijayalakshmi Pai, Neural Networks, Fuzzy Logic and Genetic Algorithms, Prentice-Hall of India Pvt Ltd , 2007.

UNIT I	Chapter 2	Sections 2.1 - 2.4	T.B-1.
	Chapter 5	Sections 5.1 - 5.8 and 6.1 - 6.9	T.B-1.
UNIT II	Chapter 7	Sections 7.1 - 7.6	T.B-1.
UNIT III	Chapter 8	Sections 8.1 - 8.8	T.B-1.
UNIT IV	Chapter 8	Sections 8.1 - 8.7	T.B-2.
UNIT V	Chapter 9	Sections 9.1 - 9.13	T.B-2.

Reference Book:

Mitsuo Gen, Runwei Cheng , Lin Lin , Network Models and Optimization: Multiobjective Genetic Algorithm Approach (Decision Engineering), Springer; 2008 th Edition ,31 July 2008.

Web Resources:

- 1. https://archive.nptel.ac.in/courses/108/108/108108148/
- 2. https://www.youtube.com/watch?v=Z_8MpZeMdD4

	Course Outcomes					
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	CO Statement	Cognitive Level (K-Level)				
CO1	understand the various classes of network optimization problems	K2				
CO2	apply the solution of Polynomial time algorithms for an MOSPP using various mean concepts	K3				
CO3	analyse the solution of non-linear mean, centroidal mean and contra harmonic mean	K4				
CO4	recognize and evaluate the concept of Genetic algorithms	K5				
CO5	create the Inheritance operators.	K6				

Relationship Matrix:

Course	Progr	amme (Outcom	es (POs	5)	Programme Specific Outcomes (PSOs)					Mean Score of
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	-	-	3	3	-	-	3	3	1.8
CO2	3	3	-	3	-	-	3	3	-	3	2.1
CO3	-	3	3	3	3	3	3	3	3	3	2.7
CO4	3	-	3	3	3	-	3	3		3	2.4
CO5	-	3	3	-	3	3	3	-	3	3	2.1
Mean Overall Score								2.22			
Correlation									Medium		

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator: Dr. S. Ismail Mohideen

Somester	Course Code		Course Cotogomy	Hours/	Credita	Marks for Evaluation			
Semester			Course Category	Week	Creans	CIA	ESE	Total	
Ι	23MPMA1CC4		CORE – IV	4	4	25	75	100	
Course Ti	tle	Numerical S	olution of Boundary Value I	Problems					

SYLLABUS					
Unit	Contents	Hours			
Ι	Ritz finite element method –*Least square finite element method *-Galerkin finite element method-Convergence analysis	12			
II	*First order initial value problems* -Second order initial value problems	12			
III	Parabolic equation - First order hyperbolic equation-second order hyperbolic equation- Bibliographical note -Problems	12			
IV	Assembly of element equations - Mixed boundary conditions - Galerkin method	12			
V	Assembly of element equations -Mixed boundary conditions-Boundary points - Galerkin method	12			
*	* Self Study				

..... Self Study

Text Book:

M.K. Jain, Numerical Solution of Differential Equations, Wiley Eastern Limited, Second Edition, New Delhi.

UNIT I	Chapter 8	Section 8.5
UNIT II	Chapter 8	Section 8.9
UNIT III	Chapter 8	Section 8.10
UNIT IV	Chapter 8	Section 8.6
UNIT V	Chapter 8	Section 8.7

Reference Books:

1. G.Evans , J.Black leeger and P. Yardley, Numerical Methods for Partial Differential Equation,

Springer International Edition ,2010.

2. Curtis. F. Gerald, Applied Numerical Analysis, Addison -Wesley Publishing Company, Second Edition, 1970.

Web Resources:

1.https://archive.nptel.ac.in/courses/112/104/112104116/ 2.https://archive.nptel.ac.in/courses/112/104/112104193/

	Course Outcomes				
Upon suc	cessful completion of this course, the student will be able to:				
CO No.	CO Statement	Cognitive Level (K-Level)			
CO1	understand the finite element methods.	K2			
CO2	apply the solution of first and second order initial value problems.	K3			
CO3	analyse and illustrate parabolic and hyperbolic equations with examples	K4			
CO4	evaluate Galerkin method for Mixed boundary conditions	K5			
CO5	create and study the assembly of element equations	K6			

Course	Pro	gramm	e Outco	omes (P	Os)	Programme Specific Outcomes (PSOs)					Mean Score of
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	-	3	3	3	3	3	-	3	2.4
CO2	3	3	-	-	3	3	3	3	-	3	2.1
CO3	3	3	3	3	-	3	3	-	3	-	2.1
CO4	3	-	3	-	3	-	-	3	3	3	1.8
CO5	3	-	3	3	-	-	-	3	3	3	1.8
Mean Overall Score										2.04	
Correlation										Medium	

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. U. Abuthahir

Somester	Course Code		Course Cotogomy	Hours/	Credita	Marks for Evaluation		
Semester			Course Calegory	Week	Creans	CIA	ESE	Total
Ι	23N	MPMA1CC4	CORE – IV	4	4	25	75	100
Course Title Stochastic Pr		Stochastic Pr	rocesses					

SYLLABUS					
Unit	Contents	Hours			
I	*General theory of continuous process* – Kolmogorov's Forward and Backward Equation – Fokker – Plank equation – An alternative approach to the diffusion equation – Wierner levey process – Uhlenbeck – Ornstein stochastic process – Diffusion processes in n dimensions – Wiener process as a continuous approximation to simple random walk – First passage problems in diffusion process- Purely Discontinuous Markov processes.	12			
ш	Definitions – Examples – Stationary and orderliness – *Distribution of Forward and Backward Recurrence Times* – Palm – Khintchine Functions – Khintchine's Limit Theorem – Palm's Theorem – Point processes on the real line: Intensity Functions, Moments and correlation – Doubly stochastic poisson Processes.	12			
ш	Coveriance Function – continuity, Differentiability, Integrals of Second Order Processes in the mean square sense- Stationary processes – Herglotz theorem- Bochner's theorem – Spectral Representation of a wide sense stationary process – Spectral Representation Theorem – Karhunen – Loeve expansion of a second order process.	12			
IV	Wiener process and wiener integrals –Ito Integral – Ito equation – Mc Shane Integrals and Models –Examples.	12			
V	Definition – Examples –Discrete Branching Process- Generating Function of the Process –The probability of extinction – Fundamental theorem of Branching processes –Total population size – Cumulant Generating function – Continuous Parameter Branching process (Markov Branching Process) –Age dependent branching process.	12			

..... Self Study

Text Book:

S.K. Srinivasan and Mehata, Stochastic Processes, Tata McGraw Hill Ltd., Second Edition.						
UNIT I	Chapter 5	Sec 5.1 - 5.6				
UNIT II	Chapter 6	Sec 6.2 - 6.5				
UNIT III	Chapter 7	Sec 7.1 - 7.6				
UNIT IV	Chapter 8	Sec 8.1 - 8.5				
UNIT V	Chapter 9	Sec 9.1 - 9.4				

Reference Books:

1. N.V.Prabhu, Macmilan, Stochastic Processes ,NEW YORK.

- 2. Somuel korlin, Howard, M.Taylor, A first course in stochastic processes Second Edition.
- 3. Narayan Bhat, Elements of Applied Stochastic processes.
- 4. J.Medhi ,Stochastic Processes–Wiley eastern Ltd., Second Edition.

5. E.Wong, Mc Graw Hill ,Stochastic Processes in information and Dynamical system, New York,. **Web Resources:**

1.https://nptel.ac.in/courses/111102014

2.https://freevideolectures.com/course/4777/nptel-stochastic-processes/123

Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	CO Statement	Cognitive Level (K-Level)				
CO1	understand the Kolmogorov's Forward and Backward Equation and Wierner levey process.	K2				
CO2	apply the solution of Khintchine's Limit Theorem and Palm's theorem	K3				
CO3	analyse the concept of Covariance Function for continuity, Differentiability, Integrals of Second Order Processes in the mean square sense.	K4				
CO4	evaluate the Wiener process and wiener integrals with examples.	K5				
CO5	create and describe the concepts of Generating Function and Fundamental theorem of Branching processes	K6				

Relationship Matrix:

Course	Pro	gramm	e Outco	omes (P	Os)	Programme Specific Outcomes (PSOs)					Mean Score of
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	-	3	-	3	3	3	-	3	-	3	1.8
CO2	-	3	-	-	3	-	3	-	3	-	1.2
CO3	3	3	3	3	-	3	-	3	3	3	2.4
CO4	3	-	3	3	-	3	3	-	3	-	1.8
CO5	3	-	3	-	3	-	3	3	-	3	1.8
Mean Overall Score									1.80		
Correlation									Medium		

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. P. Muruganantham

Someston	Course Code	Course Cotogowy	Hours/	Credita	Marks for Evaluation			
Semester	Course Coue	Course Category	Week	Creatis	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	

Course Title

Advanced Graph Theory

SYLLABUS				
Unit	Contents	Hours		
Ι	Digraphs- Types of diagraphs - *Directed paths and connected diagraph *- Incidence matrix of a diagraph - Cycle matrix of a digraph.	12		
II	Enumeration - *Labeled graphs* – Polya's enumeration theorem – Enumeration of graphs – Enumeration of trees.	12		
ш	Independent domination number – total domination number – Connected domination number - connected total domination number – clique domination number	12		
IV	Paired domination number - Induced paired domination number – Global domination number - Total global domination number – Connected global domination number – Multiple domination number	12		
V	Edge domination number – Total edge domination number –Connected edge domination number - Entire domination number and other related parameters.	12		

..... Self Study

Text Books:						
1. V.R.KULLI,, Colleg	1. V.R.KULLI, College graph theory, vishwa international publications, first edition, 2012.					
2. Frank Harary, Graph	Theory, Naro	osa Publishing House, New D	elhi, Reprint 2001.			
3. V.R.KULLI, Theory	of Domination	n in Graphs, Vishwa internati	ional publications, first edition ,2010.			
UNIT I	Chapter 9	Sections 9.2 to 9.6	T.B.1			
UNIT II	Chapter 15	Page No. 178 to 191	T.B.2			
UNIT III	Chapter 3	Sections 3.2to3.6	T.B.3			
UNIT IV	Chapter 3	Sections 3.7to3.12	T.B.3			
UNIT V	Chapter 4	Sections 4.1to4.4	T.B.3			
Reference Books:						
1. Douglas B. West Introduction to graph theory, Prentice Hall of India Pvt.Ltd, Second edition,2009.						

2. Narasingh Deo, Graph theory with application to Engineering and computer science, Prentice Hall of India Pvt. Ltd, 2008.

Web Resources:

 1.https://onlinecourses.nptel.ac.in/noc21_cs48/preview#:~:text=This%20course%20provides%20an%20in,be%20cov

 ered%20for%20significant%20impact.

 2.https://www.youtube.com/watch?v=xi_f8TfH_qM

	Course Outcomes					
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	CO Statement	Cognitive Level (K-Level)				
CO1	understand and Recall the concept of digraphs.	K2				
CO2	apply State on Polya's enumeration theorem with examples.	K3				
CO3	demonstrate the concept of domination and independent domination.	K4				
CO4	evaluate the concepts domination numbers.	K5				
CO5	create the concept of domination numbers in Edge domination number and Total edge domination number.	K6				

Course	Pro	gramm	e Outco	omes (P	Os)	Progra	Mean Seere of				
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	-	3	3	3	3	3	3	3	2.7
CO2	-	3	3	-	-	3	3	-	3	3	1.8
CO3	3	-	-	3	3	3	-	3	3	3	2.4
CO4	-	3	3	-	3	-	3	3	-	-	1.5
CO5	3	3	-	3	-	-	3	-	-	3	1.5
Mean Overall Score											1.98
				C	orrelat	ion					Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. R. Jahir Hussain

Semester	Course Code	Course Cotogory	Hours/	Credita	Marks for Evaluation			
	Course Coue	Course Category	Week	Creatis	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	

Course Title

Topological Vector Spaces

	SYLLABUS								
Unit	Contents	Hours							
Ι	Introduction-Separation-properties-Linear mapping-*Finite dimensional spaces*.	12							
II	Metrization-*Boundedness and continuity*-Semi norms and local convexity- Quotient spaces and examples.	12							
III	Baire category- The Banach-Steinhaus theorem-The open mapping theorem- The closed graph theorem-Bilinear mappings.	12							
IV	The Hahn-Banach theorems-Weak topologies-Compact convex sets-Vector- valued integration-Holomorphic functions.	12							
V	The normed dual of normed space – Adjoints – Compact operators.	12							
*	* Self Study								

Text Book:

Walter Rudin, Functional analysis, Tata McGraw-Hill Edition 2006, second edition, 4th Reprint 2008. UNIT I Sec 1.1-1.23 UNIT II Sec 1.24-1.47 UNIT III Sec 2.1-2.17 **UNIT IV** Sec 3.1-3.32 UNIT V Sec 4.1-4.25

Reference Books:

- 1. Sterling K.Berberian, Lectures in Functional Analysis and operator theory, Springer International student Edition, 1974.
- 2. Balmohan V.Limaye, Functional Analysis, New Age International Publishers, Revised Second Edition, 1996.
- 3. S. Kesavan, Functional Analysis, TRIM Hindustan Book Agency, 2009.

Web Resources:

- 1. https://onlinecourses.nptel.ac.in/noc22_ma25/preview
- 2. https://www.youtube.com/watch?v=FkJMfsNg2cM

	Course Outcomes									
Upon successful completion of this course, the student will be able to:										
CO No.	CO No. CO Statement									
CO1	understand the concept of finite dimensional spaces with examples.	K2								
CO2	apply the Metrication and Quotient spaces with examples.	К3								
CO3	analyze The Hahn-Banach theorems for Weak topologies.	K4								
CO4	evaluate the Baire category, The Banach-Steinhaus theorem and the open mapping theorem.	К5								
CO5	create the concept of compact operators.	K6								

Course	Pro	gramm	e Outco	omes (P	Os)	Progra	Mean Seera of				
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	-	3	3	-	-	3	-	3	3	-	1.5
CO3	3	3	-	3	3	3	3	-	-	3	2.1
CO4	3	-	3	3	3	-	3	3	3	-	2.1
CO5	3	-	3	-	3	3	3	-	3	3	2.1
Mean Overall Score											2.16
	Correlation										

Mean Overall Score	Correlation				
< 1.5	Low				
\geq 1.5 and < 2.5	Medium				
≥ 2.5	High				

Course Coordinator:

Dr. A. Nagoor Gani

Semester	Course Code	Course Cotogomy	Hours/	Credita	Marks for Evaluation			
	Course Coue	Course Category	Week	Creatis	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	

Course Title Fuzzy Algebra

SYLLABUS							
Unit	Contents	Hours					
Ι	Fuzzy sets- Height of Fuzzy set – *Nomal and Subnormal fuzzy sets*- Support level sets – Fuzzy points - Cuts	12					
II	Standard fuzzy operations- Union, intersection and complement – Properties – *DeMargan's Laws*	12					
III	α cuts of fuzzy operations – Representations of fuzzy sets – Image and inverse of fuzzy sets	12					
IV	Various definitions of fuzzy operations – Generalizations – Fuzzy relations – α cuts of fuzzy relations	12					
V	Fuzzy sub groups- Intersection and α cuts of fuzzy subgroups	12					
*	* Self Study						

Text Book:

M. Mrugalingan	n, S. Palaniammal, Fuzzy Algebra, Sivam Publications, Vickramasingapuram,2006.
UNIT I	Chapter I
UNIT II	Chapter II
UNIT III	Chapter III
UNIT IV	Chapter IV
UNIT V	Chapter V

Reference Book:

George J.Klir and Bo Yuan, Fuzzy Sets and fuzzy Logic Theory and Applications, Prentice Hall of India 2004.

Web Resources:

- 1. https://onlinecourses.nptel.ac.in/noc19_ma31/preview
- 2. https://www.youtube.com/watch?v=n9eNXs76VVM

	Course Outcomes									
Upon successful completion of this course, the student will be able to:										
CO No.	O No. CO Statement									
CO1	recognize the concept of fuzzy sets and their properties.	K2								
CO2	apply the domain knowledge for Standard fuzzy operations and DeMargan's Laws in fuzzy sets.	К3								
CO3	analyze the various definitions of fuzzy operations and fuzzy relations.	K4								
CO4	evaluate the domain knowledge for the Representations of fuzzy sets, Image and inverse of fuzzy sets	K5								
CO5	create the concept of Fuzzy sub groups.	K6								

Course	Programme Outcomes (POs)					Progra	Mean				
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	-	3	3	3	3	-	3	2.4
CO2	3	3	3	3	3	3	3	3	3	3	3
CO3	-	3	3	-	-	-	-	3	3	-	1.2
CO4	3	3	3	3	-	3	3	3	3	3	2.7
CO5	3	-	-	3	3	3	3	-	3	3	2.1
	Mean Overall Score										
	Correlation										

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. A. Prasanna

Someston	Course Code	Course Cotogowy	Hours/	Credita	Marks for Evaluation			
Semester	Course Coue	Course Calegory	Week	Creatis	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	

Course Title Fuzz

Fuzzy Graph Theory

SYLLABUS						
Unit	Contents	Hours				
I	Introduction – *Fuzzy sets and fuzzy set operations* – Fuzzy relations – Composition of fuzzy relations – Properties of fuzzy relations - Introduction to Fuzzy graph – Operations on fuzzy graphs – Complement of a fuzzy graph – Cartesian product and composition – Union and join.	12				
II	Geodesic, distance, covers and bases – Fuzzy end nodes and fuzzy trees – Medians and fuzzy trees – Triangle and Parallelogram laws.	12				
III	Fuzzy independent set and fuzzy bipartite graph – Fuzzy bipartite part and maximal bipartite part – *Maximal fuzzy bipartite part algorithm*.	12				
IV	Dominating set – Fuzzy Independent set – Bounds for $\gamma(G)$ – More adjacency in Fuzzy graph	12				
V	Automorphism of fuzzy graphs – metric in fuzzy graphs – Center of a fuzzy tree - Regular Fuzzy Graphs	12				
*	* Self Study					

Text Book:

A. Nagoor Gani and V.T.Chandrasekaran, A first look at fuzzy Graph Theory, Allied Publishers Pvt.Ltd. Chennai, First Edition ,2010.

UNIT I	Chapter 1	Sections 1.1 to 1.5,
	Chapter 2	Sections 2.1 to 2.2.3
UNIT II	Chapter 3	Sections 3.4 to 3.5
UNIT III	Chapter 4	Sections 4.1 to 4.3
UNIT IV	Chapter 5	Sections 5.1 to 5.4
UNIT V	Chapter 6	Sections 6.1 to 6.2

Reference Book:

J.N.Moderson & P.S. Nair, Fuzzy graphs and fuzzy hypergraphs. Livro da série: Studies in Fuzziness and Soft Computing, Physica-Verlag, 2000.

Web Resources:

- 1. https://archive.nptel.ac.in/noc/courses/noc20/SEM2/noc20-ma48/
- 2. https://nptel.ac.in/courses/111102130

	Course Outcomes							
Upon suc	Upon successful completion of this course, the student will be able to:							
CO No.	CO Statement	Cognitive Level (K-Level)						
CO1	understand the concept of fuzzy graphs and their properties with examples.	K2						
CO2	examine and apply the concept of Geodesic, distance, covers, bases and Triangle, Parallelogram laws	К3						
CO3	analyse the concept of Fuzzy independent set and fuzzy bipartite graph with algorithm.	K4						
CO4	evaluate and classify the Dominating set and fuzzy independence set.	K5						
CO5	create the idea of Automorphism of fuzzy graphs and metric in fuzzy	K6						

Course	Course Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	-	3	3	3	3	-	3	2.4
CO2	3	-	3	3	3	3	-	3	3		2.4
CO3	3	-	3	-	-	3	-	-	3	3	1.5
CO4	3	3	3	3	-	-	3	-	-	3	1.8
CO5	-	3	3	-	3	-	3	3	3	3	2.1
								Me	an Overa	all Score	2.04
									Cor	relation	Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. A. Nagoor Gani

Someston Course Code Course Cotegony	lita Iviai KS	Marks for Evaluation			
Semester Course Code Course Category Week Cred	CIA	ESE	Total		
I 23MPMA1CC4 CORE – IV 4 4	25	75	100		

Course Title Fuzzy Optimization

SYLLABUS						
Unit	Contents	Hours				
I	Interval Confidence - Fuzzy Number - Some Types of Fuzzy Numbers and its Operations - *Intuitionistic Fuzzy Numbers* - Distance formula for Fuzzy Numbers - Some Metric Properties - Lattice of fuzzy number.	12				
п	Introduction - Mathematical Model - Improving a Basic Feasible Solution – Unbounded solutions - Optimality Conditions - *Fuzzy Variable Linear Programming* - Fuzzy Basic Feasible Solution - Simplex Method for FVLP problem – Example.	12				
ш	Fuzzy Number Linear Programming - Fuzzy Basic Feasible Solution - Simplex Method for FVLP problem – Example - Duality in FNLP problem - A Fuzzy Dual Simplex Method – Algorithm – Example.	12				
IV	Introduction- Fuzzy Multi- Objective linear programming problem - Layer Ranking Method - Superiority and Inferiority Between Triangular Numbers – Some Application to Multi- Objective Fuzzy linear programming problem -Multi- Objective Fuzzy linear programming problem with Interval Number - Ranking Interval Numbers - Fuzzy Simulation Analysis Method.	12				
V	Introduction- Fuzzy General Transportation Problem (FGTP) - A parametric study on problem - Stability notions for the parametric problem - Solution Algorithm - Numerical Examples.	12				

..... Self Study

Text Book:

A.Nagoor Gani, Fuzzy Optimization – Materials Prepared

Reference Books:

1.George Bojadziev & Maria Bojadziev, Fuzzy sets, Fuzzy Logic, Applications –World Scientific Advances in Fuzzy Systems-Applications and Theory Vol.5.

- 2. Bernadette Bouchon-Meunier, Ronald R.Yager and Lofti A.Zadeh, Fuzzy Logic and Soft Computing
 - -World Scientific Advances in Fuzzy Systems Applications and Theory Vol.4.

3. George J.Klir / Bo Yuan, Fuzzy sets and Fuzzy Logic Theory and Applications, Prentice Hall of India

Private Limited, New Delhi ,2005.

Web Resources:

- 1. <u>https://www.youtube.com/watch?v=JRaZAYuKURU</u>
- 2. <u>https://www.youtube.com/watch?v=Q31jKiEXxdc</u>

	Course Outcomes							
Upon suc	Upon successful completion of this course, the student will be able to:							
CO No.	CO Statement	Cognitive Level (K-Level)						
CO1	understand the examples of interval confidence of fuzzy number and some types of fuzzy numbers.	K2						
CO2	apply the information on mathematical Model in Fuzzy Variable Linear Programming	K3						
CO3	analyse and examine in detail Fuzzy Number Linear Programming and find Fuzzy Basic Feasible Solution with example.	K4						
CO4	evaluate the properties of Fuzzy Multi- Objective linear programming problem and Layer Ranking Method.	K5						
CO5	analyse and create Fuzzy General Transportation Problem (FGTP) with Numerical example.	K6						

Course	Progr	amme (Outcom	es (POs	5)	Progra	Mean Score of				
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	-	3	3	-	-	3	-	3	-	3	1.5
CO3	3	-	3	3	3	-	3	-	3	3	2.1
CO4	-	3	3		-	3	-	3	3	-	1.5
CO5	3	3	-	3	3	3	3	-	3	3	2.4
Mean Overall Score									2.02		
Correlation	1										Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. A. Prasanna

Somester	Course Code	Course Cotogory	Hours/	Credita	Marks for Evaluation		
Semester	Course Coue	Course Category	Week	Creatis	CIA	ESE	Total
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100

Course Title Fu

Functional Analysis

SYLLABUS					
Unit	Contents	Hours			
I	Riesz Theory For Compact Operators: A type of integral equation- Operators of finite rank- Compact operators-* Adjoint of a compact operator*.	12			
Π	Fredholm Operators: Orientation- Further properties- Perturbation theory- Adjoint operator- A special case- Semi-Fredholm operators- Product of operators.	12			
III	Unbounded operators: Unbounded Fredholm operators- Further properties- Operators with closed ranges- Total subsets-Essential spectrum- *Unbounded semi-Fredholm operators*- Adjoint of a product of operators.	12			
IV	Selfadjoint Operators: Orthogonal projections- Square roots of operators- A decomposition of operators- Spectral resolution- Some consequences - Unbounded selfadjoint oerators.	12			
V	Measure of Operators: A seminorm- Perturbation classes- Related measures- Measures of compactness- The quotient space- Strictly singular operators- Norm perturbations- Perturbation functions- Factored perturbation functions.	12			

..... Self Study

Text Book:

Martin Schechter, Principles of Functional Analysis, American Mathematical Society, Second Edition ,2009.

UNIT I	Chapter 4	Sec 4.1 to 4.4
UNIT II	Chapter 5	Sec 5.1 to 5.7
UNIT III	Chapter 7	Sec 7.1 to 7.7
UNIT IV	Chapter 13	Sec 13.1 to 13.6
UNIT V	Chapter 14	Sec 14.1 to 14.9

Reference Books:

1. B. V. Limaye, Functional analysis, New Age Int. Publishers, Revised Second Edition, 1996.

- 2. K. Yosida, Functional Analysis, Springer Verlog ,1974.
- 3. Bela- Bellobas, Linear Algebra, Introductory Course, Cambridge University Press, 1990.

Web Resources:

- 1. https://archive.nptel.ac.in/courses/111/105/111105037/
- 2. https://www.digimat.in/nptel/courses/video/111101005/L01.html

Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	CO Statement	Cognitive Level (K-Level)				
CO1	understand and study the concept of Riesz Theory for Compact Operators	K2				
CO2	apply the concept of Fredholm Operators and Perturbation theory.	К3				
CO3	analyse unbounded operators and Adjoint of a product of operators.	K4				
CO4	evaluate the Self-adjoint Operators and properties.	K5				
CO5	create the concept of measure Of Operators in seminorm and Perturbation	K6				

Course	Progr	amme	Outcom	nes (PO	s)	Progra	Mean Score of				
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	-	3	3	-	3	3	-	3	2.1
CO2	3	3	3	-	3	3	3	-	3	3	2.4
CO3	3	3	3	-	-	-	-	3	3	3	1.8
CO4	3	-	-	3	-	3	3	-	3	-	1.5
CO5	-	3	-	3	3	3	-	-	3	3	1.8
Mean Overall Score							1.92				
Correlation								Medium			

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. A. Mohamed Ismayil

Someston	Course Code	Course Cotogory	Hours/	Credita	Marks for Evaluation		
Semester Course Code		Course Category	Week	Creatis	CIA	ESE	Total
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100

Course Title

Topology

SYLLABUS					
Unit	Contents	Hours			
I	Basis-Subspace -Product topology - *Separation axioms* - Urysohn lemma - Urysohn Metrization theorem.	12			
п	Connected spaces -Connected sets in the real line -Components and path components-Local connectedness -Compact spaces-*Compact sets in the real line* -Limit point compactness-Local compactness.	12			
ш	Local finiteness -The Nagata Smirnov Metrization theorem (Sufficiency& Necessity)-Paracompactness -The Smirnov Metrization theorem.	12			
IV	Fundamental group of the circle- Fundamental group of the punctured plane- Fundamental group of S -Fundamental groups of surfaces.	12			
V	Essential and inessential maps -Fundamental theorem of algebra -Vector fields and fixed points -Homotopy type.	12			

..... Self Study

Text Book:							
James R.Munkers, Topology A First Course, Prentice Hall of India, 1998.							
UNIT I	'I Chapter 2 Sections 2.2, 2.4, 2.5, 2.8						
	Chapter 4	Sections 4.2 to 4.4					
UNIT II	Chapter 3	Sections 3.1 to 3.8					
UNIT III	Chapter 6	Sections 6.1 to 6.5					
UNIT IV	Chapter 8	Sections 8.4 to 8.7					
UNIT V	Chapter 8	Sections 8.8 to 8.11					
Reference B	Reference Books:						
 V.Guillemin and A.Pollack, Differential Topology, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1974. Kelley, J.L.General Topology, Van Nostrand Reinhold Co., New York, 1955. 							
Wah Decouvered							

Web Resources:

<u>https://www.youtube.com/watch?v=cuCU1Htkxrw</u>
 <u>https://www.youtube.com/watch?v=KoANvlSdZLI</u>

Course Outcomes							
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	understand the concepts of Urysohn lemma and Urysohn metrization theorem.	K2					
CO2	apply the concepts of connected spaces and compact spaces in real line.	K3					
CO3	analyse the Nagata Smirnov metrization theorem	K4					
CO4	evaluate and construct the concept of fundamental group of the circle, punctured plane and surfaces with examples	К5					
CO5	create the fundamental theorem of algebra and Homotopy type.	K6					

Course	Progr	amme	Outcom	es (POs	5)	Progra	Mean Score of				
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	-	-	3	3	-	3	-	3	3	3	1.8
CO2	3	3	-	-	3	-	3	3	3	-	1.8
CO3	-	3	3	-	-	-	3	3		-	1.2
CO4	-	3	3	3	3	3	3	-	3	3	2.4
CO5	3	3	3	-	-	3	3	3	-	-	1.8
Mean Overall Score							1.8				
Correlation							Medium				

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. A. Prasanna

Semester	Course Code	Course Cotogomy	Hours/	Credita	Marks for Evaluation			
	Course Coue	Course Category	Week	Creans	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	
			_					

Course Title Intuitionistic Fuzzy Graph

	SYLLABUS				
Unit	Contents	Hours			
I	Fuzzy sets and fuzzy set operators – *Fuzzy relations* – Composition of fuzzy relations – Properties of fuzzy relation.	12			
п	Intuitionistic Fuzzy sets – Properties of Intuitionistic Fuzzy sets – Operations and relations over Intuitionistic Fuzzy sets.	12			
III	Intuitionistic Fuzzy Graph – Basic Definitions - *Paths and Connectedness* – Intuitionistic Fuzzy Bridge in IFG.	12			
IV	Operations on Intuitionistic Fuzzy Graph – Complement – Union and Join – Cartesian product and Composition.	12			
V	Degree of a vertex – Properties of various types of degrees – Order and size of and Intuitionistic Fuzzy Graphs – Complete and Regular Intuitionistic Fuzzy Graphs.	12			

..... Self Study

Text Book:

A. Nagoor Gani, V.T. Chandrasekaran, A First Look at Fuzzy Graph Theory, Allied Publishers Pvt. Ltd., 2010.

- **Unit I** Chapter 1, Sections 1.1 to 1.5 (Page No. 1 19) : T.B 1
- Unit II Krassimir T. Atanassov, "Intuitionistic Fuzzy Sets", Fuzzy sets and systems 20, p 87-96 1986.
- **Unit III** R. Parvathi and M.G. Karunambigai, "Intuitionistic Fuzzy Graphs", Computational Intelligence, Theory and Applications ,part 6, 139-150, 2006.
- **Unit IV** R. Parvathi, M.G. Karunambigai and Krassimir T. Atanassov, "Operations on IntuitionisticFuzzyGraphs", FUZZ- IEEE 2009, Korea, 20-24, 2009.
- **Unit V** A. Nagoor Gani and S. Shajitha Begum, "Degree, Order and Size in Intuitionistic Fuzzy Graphs", International Journal of Algorithms, Computing and Mathematics, Volume 3, Number 3, 2010.

Reference Book:

Krassimir T. Atanassov, Intuitionistic fuzzy sets: Theory and Applications, Physica Verlag, 1999.

Web Resources:

- 1. https://www.youtube.com/watch?v=XE5JZZX-sXA
- 2. https://www.digimat.in/nptel/courses/video/111106102/L08.html

	Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No. CO Statement							
CO1	understand the concept of fuzzy sets, fuzzy set operators and Fuzzy relations with Properties of fuzzy relation with examples.	K2					
CO2	apply and illustrate the concepts of intuitionistic fuzzy sets.	K3					
CO3	discuss and analyse the Intuitionistic fuzzy graph and fuzzy bridge in IFG.	K4					
CO4	evaluate the concepts on operations on intuitionistic fuzzy graph with examples	K5					
CO5	create the concept of degree of a vertex and Intuitionistic Fuzzy Graphs – Complete and Regular Intuitionistic Fuzzy Graphs with examples.	K6					

Course	Progr	amme	Outcom	es (PO	s)	Programme Specific Outcomes (PSOs)					Mean Score of
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	3	-	3	3	3	3	-	3	3	3	2.4
CO3	3	3	-	3	-	3	-	3	-	3	1.8
CO4	-	3	3	-	-	-	3	3	3	-	1.5
CO5	3	3	-	3	3	-	3	3	3	-	2.1
Mean Overall Score									2.16		
Correlation	1										Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator: Dr. S. Shajitha Begum

Semester	Course Code	Course Cotogomy	Hours/	Credita	Marks for Evaluation			
	Course Coue	Course Category	Week	Creans	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	

Course Title Control Theory

	SYLLABUS				
Unit	Contents	Hours			
I	Observability: Linear Systems – Observability Grammian – *Constant coefficient systems* –Reconstruction kernel – Nonlinear Systems.	12			
п	Controllability: Linear systems – Controllability Grammian – *Adjoint systems* – Constant coefficient systems – steering function – Nonlinear systems.	12			
ш	Stability: Stability – Uniform Stability – Asymptotic Stability of Linear Systems - Linear timevarying systems – Perturbed linear systems – Nonlinear systems.	12			
IV	Stabilizability: Stabilization via linear feedback control – Bass method – Controllable subspace –Stabilization with restricted feedback.	12			
V	Optimalcontrol: Linear time varying systems with quadratic performance criteria – Matrix Riccati equation – Linear time invariant systems – Nonlinear Systems.	12			

..... Self Study

Text Book:							
K. Balachandran and J.P.Dauer ,Elements of Control Theory, Narosa, New Delhi, 1999.							
UNIT I	Chapter 2						
UNIT II	Chapter 3 Sections 3.1 - 3.3						
UNIT III	Chapter 4						
UNIT IV	Chapter 5						
UNIT V	Chapter 6						
Reference Books:							
1. R.Conti Linea	1. R.Conti Linear Differential Equations and Control, Academic Press, London, 1976.						
2. R.F.Curtain a	nd A.J.Pritchard Functional Analysis and Modern Applied Mathematics,						
Academic Pre	ss. New York, 1977.						
2 LVI and a Car	tra lla hilitar a f Dana ani a l Gardana a Klannan A an la mi a Dahlishan Dandaraht						

- 3. J.Klamka,Controllability of Dynamical Systems Kluwer Academic Publisher, Dordrecht, 1991.
- 4. D.L.Russell, MarcelDekker, Mathematics of Finite Dimensional Control Systems New York, 1979.
- 5. E.B. Lee and L. Markus, Foundations of optimal Control Theory, John Wiley, New York, 1967.

Web Resources:

1. <u>https://www.youtube.com/watch?v=RcuGxWc0HyQ</u>

2. https://archive.nptel.ac.in/courses/107/106/107106081/

Course Outcomes							
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No. CO Statement							
CO1	understand the concepts of observability.	K2					
CO2	apply the concept of controllability in linear and non-linear	К3					
CO3	analyse the concept of asymptotic stability of linear systems and perturbed linear systems with examples.	K4					
CO4	evaluate the concept of stabilization via linear feedback control and stabilization with restricted feedback.	K5					
CO5	create the matrix Riccati equation and nonlinear Systems	K6					

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean Score of
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	-	3	3	-	3	-	3	3	3	-	1.8
CO2	3	3	-	3	3	-	3	-	3	3	2.1
CO3	3	-	3	-	3	-	3	3	-	3	1.8
CO4	-	3	3	-	3	3	-	3	3	-	1.8
CO5	-	3	3	-	-	3	-	3	3	-	1.5
Mean Overall Score								1.8			
Correlation									Medium		

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. S. Mohamed Yusuff Ansari

Semester	Course Code	Course Cotogomy	Hours/	Cradita	Marks for Evaluation			
	Course Coue	Course Category	Week	Creatis	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	

Course Title N

Mathematical Modelling

SYLLABUS					
Unit	Contents	Hours			
I	Regression and model building – Simple linear regression model – *Least squares estimation of the parameters* – Prediction of new observations - Coefficient of determination –Estimation by maximum likelihood.	12			
п	Multiple regression models – *Estimation of the model parameters*– Hypothesis testing in multiple linear regression – Prediction of new observations – Hidden extrapolation in multiple regression – Standardized regression coefficients.	12			
III	Residual analysis – The PRESS statistics – Detection and treatment of outliers – Lack of fit of the regression model – Variance-Stabilizing transformations – Transformation to linearize the model – Analytical methods of selecting a transformation – Generalized and weighted least squares.	12			
IV	Importance of detecting influential observations – Leverage – Measures of influence: Cook's D and DFFITS AND DFBETAS – A measure of model performance – Detecting groups of influential observations – Treatment of influential observations – Polynomial models in one variable –Nonparametric regression – Polynomial models in two or more variables.	12			
v	Computational techniques for variable selection – Validation techniques– Data from planned experiments – Linear and nonlinear regression model – Nonlinear least squares –Transformation to a linear model – Parameter estimation in a nonlinear system – Statistical inference in nonlinear regression.	12			

..... Self Study

Text Book:

Douglas C. Montgomery, Elizabeth A. Peck, G. Geoffrey Vining, "INTRODUCTION TO LINEAR REGRESSION ANALYSIS", Wiley Interscience Publication, fifth edition, 2004.

UNIT I	Chapter 1	Section 1.1
	Chapter 2	Section 2.1, 2.2, 2.5, 2.6, 2.11
UNIT II	Chapter 3	Sections 3.1, 3.2, 3.3, 3.5, 3.8, 3.9
UNIT III	Chapter 4	Sections 4.2, 4.3, 4.4, 4.5
	Chapter 5	Sections 5.2, 5.3, 5.4, 5.5
UNIT IV	Chapter 6	Sections 6.1, 6.2, 6.3, 6.4, 6.5
	Chapter 7	Sections 7.2, 7.3, 7.4
UNIT V	Chapter 10	Sections 10.2;
	Chapter 11	Sections 11.2, 11.3
	Chapter 12	Sections 12.1, 12.3, 12.4, 12.5, 12.6

Reference Books:

1. Damodar N. Gujarati and Sangeetha, "BASIC ECONOMETRICS", fourth edition, Tata Mc Graw Hill Edition 2007.

2. William H. Greene, "ECONOMETRIC ANALYSIS", , Pearson Education Pte. Ltd., Delhi, fifth edition 2005.

Web Resources:

1. <u>https://www.digimat.in/nptel/courses/video/111107113/L01.html</u> 2.<u>https://www.digimat.in/nptel/courses/video/111107113/L19.html</u>

Course Outcomes							
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	discuss and understand the technique of linear regression model.	K2					
CO2	apply the multiple linear regression model to find the solutions.	К3					
CO3	analyze the model adequacy checking and correct the model.	K4					
CO4	evaluate the diagnostics for leverage & influence for the polynomial regression model	K5					
CO5	create the solution of real life problem using nonlinear regression model.	K6					

Relationship Matrix:

Course Outcomes (COs)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean Score of
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	-	3	3	3	3	-	3	3	3	2.4
CO2	3	3	3	3	3	3	3	3	3	3	3
CO3	-	3	-	-	3	-	-	3	3	-	1.2
CO4	3	3	3	3	-	-	3	3	3	3	2.4
CO5	3	-	3	3	3	3	-	3	3	3	2.4
Mean Overall Score								2.28			
Correlation	1										Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator: Dr. U. Abuthahir

Semester	Course Code	Course Cotogomy	Hours/	Cradita	Marks for Evaluation			
	Course Coue	Course Category	Week	Creans	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	

Course Title | Fixed Point Theory

SYLLABUS					
Unit	Contents	Hours			
Ι	Banach's contraction principle – *Further extensions*- Caristi – Ekeland principle - Equivalance of Caristi- principles.	12			
II	Tarsiki's Fixed-point theorem - Hyperconvex spaces – Properties – *fixed-point theorems *– intersection of hyper convex spaces – Isbell's convex hull.	12			
III	Uniformly convex Banach spaces – Fixed-point theorem of Browder, Gohde and Kirk. Reflexive Banach spaces –Normal structure- Fixed point theorems.				
IV	Generalized Banach Fixed-point theorem- Upper and lower semi continuity of multivalued maps –Generalized Schauder Fixed point theorem – Variational Inequalities and the Browder Fixed-Point theorem – Extremal Principle – Applications to Game Theory – Michael's selection theorem	12			
V	Fixed point theorem for continuous functions- Brouwer's theorem -Schauder's theorem - applications - Hairy ball theorem - pancake problems- Kyfan's best approximation theorem.	12			

..... Self Study

Text Books:

- 1. M. A. Khamsi& W. A. Kirk, An introduction of Metric spaces and Fixed point theory, John
- 2. Wiley & sons, 2001.
- 3. E. Zeidler, Nonlinear Functional Analysis and its applications, Vol. I Springer Verlag New York ,1986.

UNIT – I	Chapter 3	Sections 3.1 - 3.4	T.B-1
UNIT – II	Chapter 4		T.B-1
UNIT – III	Chapter 5	Sections 5.1 -5.4	T.B-1
	Chapter 10	Section 10.1 -10.3	T.B-2
UNIT – IV	Chapter 9		T.B-2
UNIT – V	Chapter 2		T.B-2

Reference Books:

1. D.R. Smart, Fixed point theory, Cambridge University Press, 1974.

2. V.I. Istratescu, Fixed point theory, D. ReidelPublsihing Company, Boston ,1979.

Web Resources:

1. https://www.digimat.in/nptel/courses/video/111108081/L21.html

2.<u>https://www.youtube.com/watch?v=s02PzP0ECNA</u>

	Course Outcomes						
Upon successful completion of this course, the student will be able to:							
CO No.	CO No. CO Statement						
CO1	understand the study of fixed point theory helps to solve problems which are theoretical as well as practical and Realize contraction, contractive maps have elegant results on the existence and uniqueness of fixed points.	K2					
CO2	apply the properties of fixed points through the theory of non-expansive fixed point theorems and understand the geometry of the spaces involved.	K3					
CO3	analyse the generalizations of Brouwer's fixed point theorem, viz., Schauder and the use of it in analysis and differential equations.	K4					
CO4	evaluate the ideas behind Applications to Michael's selection theorem.	K5					
CO5	create the Kyfan's best approximation theorem and its consequences and Application to Pancake problems.	K6					

Course Outcomes (COs)	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean Score of
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	3	3	3	3	3	3	3	3
CO2	3	3	-	3	3	-	3	3	3	-	2.1
CO3	3	3	3	-	3	3	-	3	3	-	2.1
CO4	3	-	3	-	3	3	3	3	3	3	2.4
CO5	3	3	-	3	3	3	3	3	-	3	2.4
Mean Overall Score								2.4			
Correlation	1										Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. R. Jahir Hussain

Semester	Course Code	Course Cotogomy	Hours/	Cradita	Marks for Evaluation			
	Course Coue	Course Category	Week	Creans	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	

Course Title Fuzzy Probability

	SYLLABUS					
Unit	Contents	Hours				
I	Fuzzy Sets: Introduction – Fuzzy sets – Fuzzy Arithmetic – Fuzzy Functions – Finding a minimum of a Fuzzy Number – *Ordering Fuzzy Numbers* – Fuzzy Probabilities – Fuzzy Numbers from Confidence intervals – Computing Fuzzy Probabilities.	12				
Π	Fuzzy Probability Theory: Introduction–* Fuzzy Probability* – Fuzzy conditional Probability – Fuzzy Independence – Fuzzy Bayes' Formula – Applications.	12				
III	Discrete & Continuous Fuzzy Random Variables: Introduction – Fuzzy Binomial – Fuzzy Poisson – Applications – Fuzzy Uniform – Fuzzy Normal – Fuzzy Negative Exponential – Applications.	12				
IV	Joint Fuzzy Probability Distributions & Fuzzy Random Variables: Introduction – Continuous Case – Political Polls – Fuzzy Reliability Theory – Discrete Fuzzy Random Variables – Continuous Fuzzy Random Variables – One-to-One Transformation – Other Transformations.	12				
V	Fuzzy Queuing Theory & Fuzzy Markov Chains: Introduction – Regular, Finite, Markov Chains – Fuzzy Queuing Theory – Applications – Regular Markov Chains – Absorbing Markov Chains – Applications: Decision Model.	12				

Text Book:

James J. Bucklaey, Fuzzy Probabilities New Approach and Applications, Springer, 2005.

Reference Books:

James J. Bucklaey, Fuzzy Probability and Statistics, Springer, The Netherlands 2006.
 ReinhardViertl, Statistical Methods for Fuzzy Data, John Wiley & Sons. Ltd., 2011.

Web Resources:

1.https://www.youtube.com/watch?v=RXThpkgba7w

2.https://www.youtube.com/watch?v=ks5-9i2fI6g

	Course Outcomes						
Upon successful completion of this course, the student will be able to:							
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	understand the concept of fuzzy set, fuzzy arithmetic and fuzzy functions with the examples.	K2					
CO2	apply the domain knowledge for fuzzy probabilities and study fuzzy baye's formula.	К3					
CO3	analyse and classify the discrete and continuous fuzzy random variables with illustrate the examples.	K4					
CO4	evaluate the ideas behind Political Polls and Fuzzy Reliability Theory with the examples.	К5					
CO5	create and discuss fuzzy queuing process and fuzzy markov chains.	K6					

Course Outcomes (COs)	Progr	amme	Outcom	es (POs	5)	Programme Specific Outcomes (PSOs)					Mean Score of
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	-	3	3	3	-	3	3	-	2.1
CO2	3	3	3	-	3	3	-	3	-	3	2.1
CO3	-	-	3	3	-	-	3	3	3	-	1.5
CO4	3	3	3	3	3	3	-	3	-	3	2.4
CO5	3	3	-	3	3	3	3	-	3	3	2.4
Mean Overall Score								2.1			
Correlation								Medium			

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinator:

Dr. A. Prasanna

Somester	Course Code	Course Cotogowy	Hours/	Credita	Marks	Aarks for Evaluation		
Semester	Course Coue	Course Category	Week	Creans	CIA	ESE	Total	
Ι	23MPMA1CC4	CORE – IV	4	4	25	75	100	

Course Title Algorithmic Graph Theory

	SYLLABUS	
Unit	Contents	Hours
I	Graph Theoretic Foundations: Basic Definitions and Notations - Intersection Graphs-*Interval Graphs* - A Sneak Preview of the Notions Coming Up. The Design of Efficient Algorithms: The Complexity of Computer Algorithms- Data Structures- How to Explore a Graph -Transitive Tournaments and Topological Sorting.	12
II	Perfect Graphs: The perfect graphs theorem – P-critical and partitionable graphs – A polyhedral characterization of perfect graphs and P-critical graphs – the strong perfect graph conjecture and recent theorem.	12
III	Triangulated Graphs: Introduction - Characterizing Triangulated Graphs - *Recognizing Triangulated Graphs by Lexicographic Breadth*-First Search- The Complexity of Recognizing Triangulated Graphs-Triangulated Graphs as Intersection Graphs-Triangulated Graphs Are Perfect-Fast Algorithms for the COLORING, CLIQUE, STABLE SET, and CLIQUE-COVER Problems on Triangulated Graphs.	12
IV	Comparability Graphs: Γ -Chains and Implication Classes – Uniquely Partially Orderable Graphs – The Number of Transitive Orientations – Schemes and G- Decompositions—An Algorithm for Assigning Transitive Orientations – The Γ^* Matroid of a Graph – The Complexity of Comparability Graph Recognition – Coloring and Other Problems on Comparability Graphs - The Dimension of Partial Orders.	12
V	Split Graphs: Introduction - Characterizing Split Graphs – Degree Sequences and Split Graphs. Permutation Graphs: Introduction– Characterizing Permutation Graphs – Permutation Labelings- Applications - Sorting a Permutation Using Queues in Parallel. Interval Graphs: Some Characterizations of Interval Graphs - The Complexity of Consecutive 1's Testing - Applications of Interval Graphs - Preference and Indifference – Circular Arc Graphs.	12

Text Books:

Martin Charles Golumbic, Algorithmic Graph Theory and Perfect graphs, Elsevier Publication, Edition 2004.

- Unit I Chapters 1 and 2
- Unit II Chapter 3
- Unit III Chapter 4
- Unit IV Chapter 5
- Unit V Chapters 6, 7 and 8

Reference Books:

1. Alan Gibbons, Algorithmic Graph theory, Cambridge University Press, 1985.

2. Martin Charles Golumbic, Algorithmic Graph theory and its applications, 2003.

Web Resources:

1.<u>https://onlinecourses.nptel.ac.in/noc22_cs17/preview</u> 2.<u>https://nptel.ac.in/courses/106104170</u>

	Course Outcomes						
Upon suce	Upon successful completion of this course, the student will be able to:						
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	understand the basic concepts of Graph theory and design of efficient algorithms.	K2					
CO2	apply and illustrate the algorithms for characterizing the Perfect graphs.	K3					
CO3	analyse algorithms for coloring, clique, stable set and clique-cover problems.	K4					
CO4	evaluate the algorithms for coloring and maximum weighted clique of comparability graphs.	К5					
CO5	create the algorithms for characterizing the Split graphs, Permutation graphs and Interval graphs.	K6					

Course	Pro	gramm	e Outco	omes (P	Os)	Programme Specific Outcomes (PSOs)					Mean
Outcomes		DO3			DO5	DSO1	DSO)	DSO3	DSO/	DSO5	Score of
(COs)	101	102	105	104	105	1501	1502	1505	1504	1505	COs
CO1	•	3	-	3	-	3	3	-	-	3	1.5
CO2	3	-	3	3	3	3	3	3	3	3	2.7
CO3	3	3	3	3	3	3	3	3	-	3	2.7
CO4	3	-	3	3	3	3	-	3	3	3	2.4
CO5	3	-	3	3	3	3	-	3	3	3	2.4
								Me	an Overa	all Score	2.34
									Cor	relation	Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥2.5	High

Course Coordinator:

Dr. S. Mohamed Yusuff Ansari