M.Sc. MICROBIOLOGY

				HRS/	CDED	MA	RKS	TD 4 1
SEM	COURSE CODE	COURSE	COURSE TITLE	WEE K	CRED IT	Inter nal	Extern al	Total Marks
	20PMB1CC1	Core I	General Microbiology	6	5	25	75	100
	20PMB1CC2	Core II	Microbial Cell Physiology	6	5	25	75	100
	20PMB1CC3	Core III	Chemistry of Biomolecules	6	4	25	75	100
I	20PMB1CC4P	Core IV	General Microbiology, Microbial Cell Physiology and Chemistry of Biomolecules	6	4	25	75	100
	20PMB1DE1	DSE -I#		6	4	25	75	100
		TOTAL		30	22	125	375	500
	20PMB2CC5	Core V	Microbial Genetics and Molecular Biology	6	5	25	75	100
	20PMB2CC6	Core VI	Genetic Engineering	6	5	25	75	100
	20PMB2CC7	Core VII	Environmental and Agricultural Microbiology	6	4	25	75	100
II	20PMB2CC8P	Core VIII	Microbial Genetics and Molecular biology, Genetic Engineering, Environmental and Agricultural Microbiology Practical	6	4	25	75	100
	20PMB2DE2	DSE –II#		6	4	25	75	100
		TOT	30	22	125	375	500	
	20PMB3CC9	Core IX	Medical Microbiology	6	5	25	75	100
	20PMB3CC10	Core X	Immunology and Immunotechnology	6	5	25	75	100
	20PMB3CC11	Core XI	Bioenergetics and Enzymology	6	4	25	75	100
ш	20PMB3CC12P	Core XII	Medical Microbiology, Immunology and Immunotechnology, Bioenergetics and Enzymology Practical	6	4	25	75	100
	20PMB3DE3	DSE-III#		6	4	25	75	100
	20PMB3EC1	Extra Credit I	Online Course (MOOC)	-	1*	-	-	-
		TOT	AL	30	22	125	475	500
	20PMB4CC13	Core XIII	Fermentation Technology	6	5	25	75	100
	20PMB4CC14	Core XIV	Food and dairy Microbiology	6	5	25	75	100
IV	20PMB 4CC15	Core XV	Bioinformatics and Biostatistics	6	5	25	75	100
	20PMB4PW	Project Work Online Course	Project	12	8	-	200	200
	(Compulsory)			-	1	-	-	-
	20PCNOC	Extra Credit-II	Microbiology for career Examinations	-	5*	-	100*	100*
	ı	TOT	TAL	30	24	75	525	500
		GRAND TO	ral	120	90	450	1750	2000

^{*}Not considered for Grand total and CGPA

Discipline Specific Electives

Semester	Subject code	Course Title
I	20PMB1DE1A	Virology
	20PMB1DE1B	Microbial Diversity
		·
II	20PMB2DE2A	Microbial Ecology
	20PMB2DE2B	Bioremediation and Waste Management
III	20PMB3DE3A	Bioinstrumentation and Bioethics
	20PMB3DE3B	Endocrinology

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External marks
I	20PMB1CC1	Core – I	GENERAL MICROBIOLOGY	6	5	100	25	75

- 1. Examine the characteristics and applications of microbial adaptations in planet.
- 2. Identify the group and proper name of organisms through standardized system.
- 3. Explain the evolutionary history, classification and distinguished features of bacteria.
- 4. Summarize the characteristics, structures and life cycle of fungi.
- 5. Acquire the relevant knowledge about the structure, life cycle and characteristics of microalgae.

UNIT I 18 hours

Microbial Planet: Main themes of Microbiology- Impact of microbes on earth-Microbial involvement in energy and nutrient flow -Application using microorganism: versatile chemical changes, #impact on infectious human disease#.

UNIT II: 18 hours

Microbial Taxonomy: Organizing, classifying and naming the microorganism. Levels of classification- system of presenting a universal tree of life. Basic concept of numerical taxonomy. Criteria used in bacterial identification: Classical and Molecular characteristics. Microbial kingdom concept. Classification system of prokaryotes by Bergey's manual of systematic bacteriology (9th edition).

UNIT III 18 hours

Bacterial profiles: General characteristics, Structure and Reproduction of Eubacteria, Archaebacteria, "Mycoplasma" Actinomycetes, Rickettsiae, Chlamydias, Spirochaete and Cyanobacteria.

UNIT IV 18 hours

Fungal profiles: History, general characteristics, habit, habitats and mode of nutrition. Classification of Fungi by Alexopoulos (1979). Heterokaryon- Dimorphic fungi and imperfect fungi. Morphology, structure and life cycle of *Aspergillus niger* and *Saccharomyces cerevisiae*.

UNIT V 18 hours

Microalgae: Classification of algae based on Fritsch system- General characteristics of microalgae – Habit, Habitat, Biological and Economic importance of microalgae- Morphology, structure, life cycle of *Chlorella* and *Dunaliella*.

#...... Self study portion

Text Books:

- **T.B-1** J. Michael, J. R. Pelczar, E. C. S. Chan and N. R. Kreig, Microbiology, 5th edition, McGraw Hill. Inc, New York, 1993.
- **T.B-2** S. S. Purohit and A. K. Saluja, H. N. Kakrani, Pharmaceutical Microbiology, Mrs.Sarwathi purohit for student edition, India, 2006.
- **T.B-3** K. S. Bilgrami and R. K. Sinha, Essentials of Microbiology, 1st edition, SK Jain for CBS publishers and distributors, 2005.
- **T.B-4** P. S. Bisen Kavitha Verma, Hand book of Microbiology, 2004.

UNIT I	Chapter I	T.B-1
UNIT II	Chapter III & V Chapter V	T.B-2 T.B-3
UNIT III	Chapter XXIII	T.B-4
UNIT IV	Chapter XVII	T.B-1
UNIT V	Chapter XVIII	T.B-1

Books for Reference:

- 1. J.G. Holt, N.R. Kreig, P.H.A. Sneath, and S.T. Williams, Bergey's Manual of Systematic Bacteriology, 9th edition, Williams and Wilkins, Baltimore, 1994.
- 2. L. M. Prescott, J. P. Harley and D. AKlein, Microbiology, 7th edition, Mc Grow Hill, 2007.
- 3. M.T. Madigan, J.M. Martinko and J.Parker, Brock Biology of microorganisms, 11th edition, Pearson Education international, USA, 2006.
- 4. G. J. Tortora, B.R Funke and C. L. Case, Microbiology an Introduction, 8th edition, LPE-Pearson Education, Inc, 2005.

Web Reference:

- 1. https://nptel.ac.in/courses/102103015/
- 2. https://courses.lumenlearning.com/suny-biology2xmaster/chapter/ecology-of-fungi/

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		1	Title of the Paper Hours Credi					
I	201	PMB1CC	C1	M	GENE IICROBI	RAL OLOGY		6		5
Course Outcomes		nme Oı (POs)	utcomes	5	Programme Specific Outcomes (PSOs)					
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	✓		✓		✓	✓		✓		✓
CO2	✓	✓			√	✓	✓			✓
CO3	√		✓	✓	✓	✓		✓	✓	√
CO4	✓		√	✓	✓	√		✓	✓	✓
CO5	✓		✓	✓ ✓ ✓					✓	✓
Number of Matches= 36, Relationship: High										

Prepared by:

1. Dr.M.Mohamed Mahroop Raja

Checked by:

- 1. Dr.N.Reehana
- 2. Dr.A.Khaleel Ahamed

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External marks
I	20PMB1CC2	Core – II	MICROBIAL CELL PHYSIOLOGY	6	5	100	25	75

- 1. Describe the synthesis of bacterial cell wall and its transport mechanism.
- 2. Observe the specific growth rate of microbes under different physicochemical conditions.
- 3. Determine the distribution, classification and applications of archaebacteria.
- 4. Acquire knowledge on photosynthesis and its pigments produced by microorganism
- 5. Identify the catabolic and anabolic reactions occurring in the organism.

UNIT I 18 hours

Cell structure and function: Bacterial cell wall - Biosynthesis of peptidoglycan - outer membrane, teichoic acid – Exopolysaccharides; cytoplasmic membrane, pili, fimbriae, S-layer. Nutrient Transport mechanisms- uniport, symport and antiports- active, passive, facilitated diffusions and group translocation- Siderophore in Iron transport. Electron carriers – artificial electron donors – inhibitors – uncouplers – energy bond – phosphorylation.

UNIT II 18 hours

Microbial Growth: Microbial Nutrition- autotroph, phototroph, heterotroph, organotroph, lithotrophs and Winogradsky column. Phases of growth curve – measurement of growth – calculations of growth rate – generation time. Diauxic growth, Synchronous growth – induction of synchronous growth, synchrony index and Continuous growth. *Factors affecting microbial growth*- Cell division- mechanisms involved in formation of Z-ring.

UNIT III 18 hours

Archaebacteria: Characteristics, cell wall, properties, distribution, abundance and ecological niche. Thermophiles: Classification, hyperthermophilic habitats and ecological aspects. Extremely Thermophilic Archaebacteria, Thermophily, commercial aspects of thermophiles. Applications of thermozymes. Methanogens: Classification, Habitats, applications.

UNIT IV 18 hours

Microbial Photosynthesis: Carbon assimilation- oxygenic and anoxygenic photosynthesis. Photosynthetic and accessory pigments. Fluorescences and phosphoroscenses. *bacteriochlorophyll,* rhodpsin, carotenoids, phycobiliproteins, Pulcherrimin, indigoidin, vioalecin. Defensive role of pigments. Bioluminescence mechanism – advantages.

UNIT V 18 hours

Microbial Catabolism and Anabolism- Fermentation and Respiration-EMP pathway-Pasture effect, ED pathway, Glyoxalate pathway, Krebs cycle. Anabolism- Gluconeogenesis and *reverse TCA cycle*. Microbial growth on C1 Compounds (Cyanide, Methane, Methanol, methylated amines and carbon monoxide).

T.B-1 M. L. Gupta and M. L. Jangir, Cell biology: Fundamentals and Applications, Agrobios, India, 2010.

T.B-2 H. G. Schlegel, General Microbiology, 7th edition, Cambridge university press, 2004.

T.B-3 Stuart Hogg, Essential Microbiology, John Wiley and sons Ltd, 2005.

T.B-4 D. L. Nelson and M. M. Cox, Lehninger: Principles of Biochemistry, 4th edition,

W. H. Freeman and company, 2005.

T.B-5 L. M. Prescott, J. P. Harley and D. AKlein, Microbiology, 7th edition, Mc Grow Hill, 2007.

UNIT I	Chapter III	T.B-2
UNIT II	Chapter V	T.B-3
UNIT III	Chapter XXIV, XXV	T.B-1
UNIT IV	Chapter XIX	T.B-4
UNIT V	Chapter VIII	T.B-5

Books for Reference:

- 1. D.R.Caldwell, Microbial Physiology and Metabolism, W.M.C.Brown Publishers, 2nd edition, LPE-Pearson Education, Inc, 1995.
- 2. J.L.Ingraham and C.A.Ingraham, Introduction to Microbiology, 3rd edition, Thomson Brooks/cole publication, 2004.
- 3. G.Gottychalk, Bacterial Metabolism, 2nd edition, Springer- Verlag, Berlin Hissar, Agricultural University, Prentice Hall of India Pvt Ltd, Delhi, 1986.
- 4. H.W. Doelle, Bacterial Metabolism, 2nd edition, Academic press, Elsevier Publication, New Delhi, India, 2005.

Web Reference:

- 1. https://nptel.ac.in/courses/102103015/
- 2.https://courses.lumenlearning.com/microbiology/chapter/introduction-to-microbialmetabolism/

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code			Title of the Paper				Hours	С	Credits	
1	201	PMB1CC	C2		ICROBIA PHYSIO	AL CELL LOGY			6		5	
Course Outcomes (COs)		Progran	nme Oı	utcome	5	Pr	ogran	nm	e Specifi	c Outcom	ies	
					(PSOs)							
(COS)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO	2	PSO3	PSO4	PSO5	
CO1	✓		✓	✓	✓	✓			✓	✓	✓	
CO2	✓		✓	✓	✓	✓			✓	✓	✓	
CO3	✓	✓				✓	✓	,				
CO4	✓		✓	✓	✓	√			✓	✓	✓	
CO5	√			✓	✓	√				✓	✓	
	Number of Matches= 34, Relationship : Moderate											

Prepared by:

1. Dr.M.Mohamed Mahroop Raja

Checked by:

1. Dr.N.Reehana

2. Dr.A.Khaleel Ahamed

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20PMB1CC3	Core – III	CHEMISTRY OF BIOMOLECULES	6	4	100	25	75

- 1. Acquire knowledge on living organism and its physico chemical regulation.
- 2. Explain the role of carbohydrates and proteins, their chemical alterations and maintenance in living cells.
- 3. Explain the types, structure, property, and biosynthesis regulation of lipids and nucleic acids.
- 4. Describe the chemical nature of hormones and vitamins in the cell.
- 5. Identify the types of molecules that act in cell signaling pathway.

UNIT I 18 hours

Basics of Biochemistry: The chemical unity of diverse living organisms, composition of living matter. Macromolecules and their monomeric subunits. Structure of atoms. Principles and types of chemical bonding. Structure and properties of water, Acids and bases. Bond strength and interaction between biomolecules. Basic concept on pH, pKa value and buffer.

UNIT II 18 hours

Carbohydrates and Proteins: Classification, structure and reactions of monosaccharides and disaccharides. Structure and conformation of polysaccharides - Cellulose, Amylose, Chitin-**Protein**- properties of aminoacids. Classification of proteins. Structure of Protein- primary, secondary, tertiary and quaternary structure.

UNIT III 18 hours

Lipids and Nucleic acids: Biological importance and classification of lipids. Properties and types of fats and fatty acid - β -oxidation. *Biosynthesis of cholesterol*. **Nucleic acid** biosynthesis and degradation (de novo and salvage path way).

UNIT IV 18 hours

Vitamins and Hormones: Definition, structure, properties and classification of vitamins- fat soluble vitamins-vitamin A, D, E and K; water soluble vitamins B12, B2, B6 group and vitamin- C. Microbial assay of vitamins and amino acids. Coenzyme activity of vitamins. Protein and peptide hormones – auxin, *gibberellins* and cytokinins.

UNIT V 18 hours

Bio signaling: Molecular mechanism of signal transduction-gated ion channel, cell surface receptor and hormones. Signaling through G protein coupled receptor and second messengers. Protein kinase in signal transduction. Regulation of signaling pathways and *programmed cell death*.

#......# Self study portion

Text Books:

- **T.B-1** U. Satyanarayana and U. Chakrapani, Biochemistry, 3rd edition, Arunabha Sen Publisher, 2016.
- **T.B-2** Eric E. Conn, Paul K. Stumpf, George Bruening and Roy H. Doi, Outlines of Biochemistry, 5th edition, Wiley India Publisher, 2006.
- **T.B-3** Ajoy Paul, Text book of cell and molecular biology, 4th edition, Arunabha Sen Publisher, 2015.

UNIT I	Chapter I-III	T.B-1
UNIT II	Chapter II & IV	T.B-1
UNIT III	Chapter III,XIX	T.B-1,2
UNIT IV	Chapter VII	T.B-1
UNIT V	Chapter XV	T.B-3

Books for Reference:

- 1. J. M. Berg, J. L. Tymoczko and L. Stryer, Biochemistry, 5th Edition, W.H. Freeman, New York., 2005.
- 2. W. B. Wood, J. H. Wilson, R. M. Benbow and L. E. Hood, Biochemistry: A problems approach, 2nd Edition, Benjamin/Cummins Publishing Company., 1981.
- 3. D. Voet and J. G. Voet, Biochemistry, 4th Edition, Wiley & Sons., 2011.
- 4. A. L Lehninger, D. L Nelson, M. M Cox, Principles of Biochemistry, CBS Publishers., 1993.

Web Reference:

- 1. https://nptel.ac.in/courses/102103015/
- 2. https://www.ncbi.nlm.nih.gov/books/NBK9924/

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		-	Title of the Paper			Hours	С	Credits	
I	201	PMB1CC	C3		CHEMIS'	TRY OF ECULES		6		4	
Course Outcomes (COs)		Progran	nme Oi (POs)	utcomes	rtcomes Program			mme Specific Outcomes (PSOs)			
(COS)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	✓	✓		✓		✓	✓		✓		
CO2	✓	✓		✓	✓	✓	✓		✓	✓	
CO3	✓	✓		✓	✓	✓	✓		✓	✓	
CO4	✓	✓	√	✓	✓	✓	✓	✓	✓	✓	
CO5		✓		✓			✓		✓		
Number of Matches= 36, Relationship : Moderate											

Prepared by:

1. Dr.H. Vajiha Banu

Checked by:

- 1. Dr.N.Reehana
- 2. Dr.A.Khaleel Ahamed

Semester	Code	Course	Title of the	Hours	Credits	Max. Marks	Internal Marks	External Marks
			Course			Marks	Marks	Marks
I	20PMB1CC4P	Core – IV	GENERAL MICROBIOLOGY, MICROBIAL CELL PHYSIOLOGY AND CHEMISTRY OF BIOMOLECULES – PRACTICAL	6	4	100	25	75

- 1. Examine the principles and methodologies for isolation and characterization of microorganisms.
- 2. Acquire knowledge about microorganism and its biochemical regulation.
- 3. Compare the factors affecting bacterial growth.
- 4. Report the reproducible data from biochemical experiments.
- 5. Apply the principles governing the structure of macromolecules and their participation in chemical reaction.

GENERAL MICROBIOLOGY

- 1. Enumeration of Bacteria and Fungi- Viable plate count.
- 2. Pure culture techniques- Streak plate method
- 3. Measurement of size of microbes micrometry method.
- 4. Motility determination Hanging drop method and stab method
- 5. Staining methods- Gram staining, Acid fast, Endospore, PHB, and Capsule staining.
- 6. Lactophenol cotton blue staining method

MICROBIAL CELL PHYSIOLOGY

- 7. Measurement of growth curve- Direct and indirect methods.
- 8. Effect of pH and Temperature on microbial growth.
- 9. Effect of high salt concentration on microbial growth.
- 10. Biochemical tests: IMVIC, Catalase, Oxidase, TSI test, Gelatin, casein, starch Hydrolysis, and Urease test.

CHEMISTRY OF BIOMOLECULES

- 11. Acid base Titration and PKa determination
- 12. Estimation of total sugar
- 13. Separation of amino acid by paper chromatography
- 14. Extraction and Estimation of Total protein Lowery et al method

Practical manuals

- 1. K.R. Aneja, Experiments in Microbiology, Plant pathology and Biochemistry, 4th edition, New age International publishers, India, 2003.
- 2. Cappuccino and G. James, Microbiology a laboratory manual, 4th edition, Addison Wesley Publishing Company Inc. California, 1996.
- 3. K.Wilson and Walker, Practical Biochemistry, Principles and Techniques, Cambridge University Press, 1995.
- 4. J. Jayaraman, Laboratory Manual in Biochemistry, 2nd edition, Newage publication, 2011.

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		Title of the Paper				Hours	С	Credits	
ı	20P	MB1CC	4P	GENERAL MICROBIOLOGY, MICROBIAL CELL PHYSIOLOGY AND CHEMISTRY OF BIOMOLECULES – PRACTICAL			GY,	6		4	
Course Outcomes		Progran		utcomes	-				ecific Outcomes		
(COs)			(POs)					(PSOs)		_	
(CO3)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	✓		✓	✓	✓	✓		/	✓	✓	
CO2	✓	✓		✓	√	✓	√		✓	✓	
CO3			✓	✓	✓			✓	✓	✓	
CO4	✓		✓		√	1		✓		✓	
CO5	✓		✓	✓	✓	√		✓	✓	✓	
	I	I	1	N	Number	of Match	es= 30	6, Relation	ship : N	loderate	

Prepared by:

1. Dr.M.Mohamed Mahroop Raja

Checked by: 1. Dr.N.Reehana

2. Dr.A.Khaleel Ahamed

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20PMB1DE1A	DSE – I	VIROLOGY	6	4	100	25	75

- 1. Explain the concepts studied in virus discovery, taxonomy, properties and structure, classification and replication strategies.
- 2. Introspect the knowledge on virus infecting plants and its economic importance.
- 3. Acquire knowledge on human and animal viruses.
- 4. Describe the structure and characteristics of various bacteriophages.
- 5. Demonstrate the different types of virus cultivation methods and biosafety.

UNIT I 18 hours

General Virology: History of viruses, Virus taxonomy, nomenclature and classification. properties of viruses; morphology and ultrastructure; capsids and capsomers arrangements; types of envelops and their composition, "viral genome", introduction to replication strategies. Virus related agents (viroids, virusoids and prions).

UNIT II 18hours

Plant viruses: Characteristics- Tobamovirus group (TMV); Tymovirus group (Circular mosaic virus); "Tomato spotted wilt virus", potato virus X, cauliflower mosaic virus, effects of these viruses on plants and various histological and physiological changes induced due to viral infection. Transmission of plant viruses with vectors insects, nematodes, fungi and without vectors (contact, seed and pollens).

UNIT III 18 hours

Human and animal viruses: Characteristics- Adenovirus, Pox virus (DNS containing), Picornavirus, Rota virus, Retrovirus, Corona viruses (RNA containing). Mechanism of virus adsorption and entry into host cell including genome replication and mRNA production by animal viruses, mechanism of RNA synthesis, mechanism of DNA synthesis, transcription mechanism and post transcriptional processing, #translation of viral proteins#, assembly, exit and maturation of progeny virions. Oncogenic viruses.

UNIT IV 18 hours

Bacteriophages: Morphology, ultra structure and classification of phages. *one step growth curve and burst size*. life cycle pattern of bacteriophages: T- even phages; Structure of Cyanophages, Mycophages. General principles of phage- bacterium interaction and growth cycle studies of RNA and DNA phages, Phage genetics- Lambda phage.

UNIT V 18 hours

Cultivation of viruses: Growth of viruses in embryonated egg, in experimental animals and in cell cultures-primary, secondary, Diploid and continuous cell culture. Susceptible cell lines. Assay of viruses: physical and chemical methods of assay, (protein, nucleic acid, radioactivity tracers, electron microscopy. Infectivity assay of animal virus (plaque method, pock counting, end point method) and #infectivity assay of plant viruses#. Biosafety and containment facility in virology lab.

T.B-1 S. J. Flint, L. W. Enquest, V. R. Rancaniello and A. M. Skalka, Principles of Microbiology, 3rd edition, American Society for Microbiology, 2009.

T.B-2 J. Michael, J. R. Pelczar, E. C. S. Chan and N. R. Kreig, Microbiology, 5th edition, McGraw Hill. Inc, New York, 1993.

T.B-3 P. Saravanan, Virology, MJP Publishers, 2006.

T.B-4 Apoorva Karanth, Plant virology, Dominant publishers and distributors, New Delhi, 2008.

UNIT I	Chapter I &IV	T.B-1
UNIT II	Chapter X, XIII & XIV	T.B-4
	Chapter III	T.B-3
UNIT III	Chapter IV	T.B-3
01,12 122	Chapter V to VII, IX	T.B-1
UNIT IV	Chapter II	T.B-3
	Chapter XX	T.B-2
UNIT V	Chapter II	T.B-1

Books for Reference:

- 1. S.J. Flint, L.W. Enquist, R. Krung, V.R. Racaniello and A.M. Skalka, Principles of Virology, ASM press, Washington, 2000.
- 2. Geeta Sumbali and R.S. Mehrotra, Principles of Microbiology, 1st edition, Tata McGraw Hill Pvt ltd, New Delhi, 2009.
- 3. H.F. Conrat, P.C. Kimball and J.A. Levy, Virology, 2nd edition, Prentice Hall, New Jersey,1988.
- 4. J.A. Cann, Principles of Molecular virology, 3rd edition, Academic press, California, 2001.

Web Reference:

- $1. \underline{https://courses.lumenlearning.com/boundless-biology/chapter/viral-evolution-morphology-and-classification/}$
- $2. \underline{https://www.khanacademy.org/science/biology/biology-of-viruses/virus-\underline{biology/a/bacteriophages}}$

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		Title of the Paper				Hours	С	Credits	
ı	20P	MB1DE	1A	VIROLOGY				6		4	
Course Outcomes		Progran	nme Oı (POs)				ogram	mme Specific Outcomes (PSOs)			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	✓	✓		✓		✓	✓		✓		
CO2	✓	✓			✓	√	✓			✓	
CO3	✓	✓		✓		✓	✓		✓		
CO4	✓				✓	✓				✓	
CO5	✓	✓	✓	✓		√	√	✓	✓		
		•	•		Number	of Match	es= 3	0, Relation	ship : N	oderate	

Prepared by: 1. Dr.H.Vajiha Banu

Checked by:

1. Dr.N.Reehana

2. Dr.A.Khaleel Ahamed

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
I	20PMB1DE1B	DSE – I	MICROBIAL DIVERSITY	6	4	100	25	75

- 1. Describe the history and development of evolutionary relationships.
- 2. Report the evidence of biodiversity and its energy production.
- 3. Explore the different adaptations of microbes in stressful environment.
- 4. Acquire basic idea on marine diversity.
- 5. Analyze marine microbial association and its products applications.

UNIT I 18 hours

Origin and evolution of life - Theories of evolution; evidences for evolution; sources of variations (mutation, recombination, genetic drift, migration, natural selection); concept of species; "Specification and isolation (geographical and reproductive)"; origin of species.

UNIT II 18 hours

Biodiversity: Distribution, Abundance and Ecological niche. Biodiversity indices- alpha, beta and gamma diversity. Life detection methods: Evidence of metabolism (Gulliver), Evidence of photosynthesis (autotrophic and heterotrophic), ATP production, Phosphate uptake and Sulphur uptake.

UNIT III 18 hours

Extremophiles: Definition, characteristics, classification and applications of Alkalophiles, Acidophiles, Halophiles, Barophiles, Extremophiles – adaptations & significance on bacteria-oxygen toxicity, pH, osmotic pressure and heat shock etc.

UNIT IV 18 hours

Marine Diversity: Marine environment- properties of seawater, chemical and physical factors-Ecology of coastal, shallow and deep sea microorganism- significance of marine microflora. Diversity of microorganism in the mangroves and coral environments.

UNIT V 18 hours

Microbial endosymbionts: Epiphytes- coral- microbial association, sponge- microbial association. Marine microbial products- Carrageenan, agar-agar, sea weed fertilizers, polysaccharide - biosurfactants - enzyme - antibiotics and antitumour agents.

#......# Self study portion

Text Books:

- **T.B-1** L.M. Prescott, P. John Harley and A. Donald Klein, Microbiology, 7th edition, Mc Grow Hill, USA, 2007.
- **T.B-2** Manoj Tiwari, Kapil Khulbe and Archana Tiwari, Environmental studies, 1st edition, I.K. Internatonal, 2007.
- **T.B-3** P.S.Bisen and Kavitha Verma, Hand book of Microbiology, CBS Publishing, 1994.

- **T.B-4** David Freifelder, Molecular biology, Library of congress cataloging in publication data, 2007.
- **T.B-5** D.M.Vasudevan, Biotechnology application, 1st edition, Jaypee Brothers Medical Publishers (p) Ltd, 2008.

UNIT I	Chapter VIII	T.B-1
UNIT II	Chapter IV	T.B-2
UNIT III	Chapter VII	T.B-3
UNIT IV	Chapter XXVI	T.B-4
UNIT V	Chapter VIII	T.B-5

Books for Reference:

- 1. R.Y. Stainer, J.L. Ingraham, H.H.Wheolis and P.R. Painter, The Microbial world, 5thedition, Prentica Hall, 1986.
- 2. M.T. Madigan, J.M. Martinko and J.Parker, Brock Biology of microorganisms, 11th edition, Pearson Education international, USA, 2006.
- 3. P. M. Gault and H. J. Marler, Handbook on Cyanobacteria: Biochemistry, Biotechnology and Applications (Bacteriology Research Developments), Nova Science Publishers, 2009.

Web Reference:

- 1. https://www.khanacademy.org/science/biology/her/evolution-and-natural-selection/a/lines-of-evidence-for-evolution
- 2. https://www.khanacademy.org/science/biology/her/evolution-and-natural-selection/a/lines-of-evidence-for-evolution

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code			Title of the Paper				Hours	С	Credits	
1	20P	MB1DE	lB	MICROBIAL DIVERSITY				6			4	
Course Outcomes		Progran	nme Ou (POs)	itcomes Prograi			mme Specific Outcomes (PSOs)					
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO	2	PSO3	PSO4	PSO5	
CO1	✓	✓				✓	✓	,				
CO2	✓			√	✓	✓				√	✓	
CO3	✓			√	1	✓				✓	✓	
CO4	✓		√	✓	✓	√			✓	√	√	
CO5	✓			✓	✓	✓				✓	✓	
Number of Matches= 30, Relationship : Moderate												

Prepared by:

Checked by:

1. Dr.M.Mohamed Mahroop Raja

- 1. Dr.N.Reehana
- 2. Dr.A.Khaleel Ahamed

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
п	20PMB2CC5	Core – V	MICROBIAL GENETICS AND MOLECULAR BIOLOGY	6	5	100	25	75

- 1. Describe the knowledge on nucleic acids.
- 2. Explain the system of DNA replication and DNA repair.
- 3. Analyze the principle of gene transfer mechanism and its regulations.
- 4. Acquire knowledge on mutation and its effect.
- 5. Demonstrate the molecular aspects of gene regulation.

UNIT I 18 hours

Nucleic Acids: Genome organization of Prokaryotes and Eukaryotes. Structural aspects of Nucleic acid- the double helical model- various forms of DNA and RNA, hyperchromicity-Nucleic acid as a genetic material- Griffith, Blender jar experiment, Avery experiment, RNA as a genetic material, Beadle and Tatum experiment. Genetic code- general features, wobble hypothesis, *Code is triplet – Molecular evidence*.

UNIT II 18 hours

Maintenance of Genetic Information: DNA replication- basic rules, Semi conservative model-Meselson and Stahl experiment, replication of circular DNA molecule, Discontinuous replication, Bi directional replication, Rolling circle mechanism. DNA damage and repair mechanism- Photo reactivation- Mismatch Repair- *Nucleotide Excision Repair*. Recombination repair- SOS repair.

UNIT III 18 hours

Gene transfer mechanisms: Horizontal gene transfer. Transformation process and regulation. Transduction- general and specialized- Lederberg and Zinder experiment. Conjugation-F⁺, F, Hfr and F', triparental mating, self transmissible and mobilizable plasmids and pili. Transposable elements and *reteroposons types and applications*.

UNIT IV 18 hours

Mutation: Mutation and mutagenesis- Definition and types- Spontaneous mutation and induced mutation- substitution, Insertions, Deletions and frameshifts. Mutagenesis- physical and chemical- UV, alkylators, Base analogs, intercalating agents and mutator genes. Detection, isolation, characterization of mutant and their uses. *Ames test for mutagenicity*.

UNIT V 18 hours

Molecular aspect of gene expression: Regulation of gene and gene expression in prokaryotes and eukaryotes- Transcription and translation. Gene rearrangement by RNA splicing. Catalytic RNA. Gene regulation in prokaryotes: Operon concept- Lac and Trp operon.

- **T.B-1** W. H. Elliott and D. C. Elliott, Biochemistry and Molecular Biology, John Wiley & Sons Ltd, 1993.
- **T.B-2** David Freifelder, Molecular Biology, 2nd edition, Narosa Publication, 1990.
- **T.B-3** George M. Malacinski, Essentials of Molecular Biology, 4th edition, Jones and Bartlett publishers, 1992.
- **T.B-4** P. J. Bottiono, The Science of Genetics, 6th edition, Macmillan publishing company, 1989.

UNIT I	Chapter VI Chapter IX	T.B-3 T.B-4
UNIT II	Chapter XXIII Chapter IX	T.B-1 T.B-2
UNIT III	Chapter VII,IX Chapter XXI	T.B-3 T.B-2
UNIT IV	Chapter X,XIII	T.B-4
UNIT V	Chapter XXIV Chapter X	T.B-1 T.B-2

Books for Reference:

- 1. B. Lewin, Genes VII, Oxford University press, 2000.
- 2. J.D Watson, T.A. Baker, S.P. Bell and Alexander Gann. Molecular Biology of the Gene, 5th edition, Benjanun/cummmgs, Publishing Company Inc, New York, 2004.
- 3. P. Steller and D.E. Bianchi, Cell and molecular biology, 3rd edition, Wiley publication, India, 2009.
- 4. T.A. Brown, Essential Molecular Biology A Practical approach, Oxford University Press, Oxford, 1991.

Web reference:

- 1.https://bio.libretexts.org/Bookshelves/Biochemistry/Book%3A_Biochemistry_Free_For_All_ (Ahern%2C_Rajagopal%2C_and_Tan)/2%3A_Structure_and_Function/2.6%3A_Structure_and_Function Nucleic Acids
- 2. https://www.khanacademy.org/science/biology/gene-regulation/gene-regulation/inbacteria/a/the-lac-operon

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		Title of the Paper				Hours	С	Credits	
II	201	PMB2CC	C5	MICROBIAL GENETICS AND MOLECULAR BIOLOGY				6		5	
Course Outcomes		Progran	nme Oı (POs)	utcomes Program			ogram	mme Specific Outcomes (PSOs)			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	✓	✓		✓		✓	✓		✓		
CO2	✓			✓		✓			✓		
CO3	✓	✓		✓	✓	✓	✓		✓	✓	
CO4	✓	✓	√		✓	✓	✓	✓		1	
CO5	✓			√	✓ ✓				√	✓	
	I	I	I	<u> </u>	Number	of Match	es= 32	2, Relation	ship : N	loderate	

Prepared by: 1. Dr.N.Reehana

Checked by:
1. Dr.M.Mohamed Mahroop Raja
2. Dr.A.Khaleel Ahamed

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
II	20PMB2CC6	Core – VI	GENETIC ENGINEERING	6	5	100	25	75

- 1. Acquire knowledge on basic properties and classification of vector.
- 2. Examine the mode of action of various enzymes used in genetic engineering.
- 3. Explain the concept of cloning strategies and techniques.
- 4. Apply the rDNA by using advanced techniques.
- 5. Conclude the applications of rDNA technology and its safety guidelines.

UNIT I 18 hours

Vector Biology: Vectors- properties and classification. Plasmid: types and properties. Structure and application of bacterial plasmids: ColE1, pBR322 and pUC19. Bacteriophages vectors - M13 vector and Lambda phage vector. Phagemids, Cosmids. Artificial chromosomes. Viral vectors used in gene therapy.

UNIT II 18 hours

Enzymes in genetic engineering: Restriction enzymes (Type, classification, nomenclature and application). Role of Ligases, Alkaline phosphatase, Polynucleotide kinase, Terminal nucleotidyl transferase, DNA Polymerases, Taq DNA polymerases, RNAse, Reverse transcriptase in rDNA technology.

UNIT III 18 hours

Cloning strategies: Gene Library construction- shotgun cloning and cDNA cloning. Cloning in *Saccharomyces cerevisiae* and other fungi. Screening of recombinants: Insertional inactivation, Blue white selection, positive selection, colony and plaque hybridization. Gene transfer in Bacteria- Electroporation, CaPO₄ mediated, DEAE, *liposomes* and DMSO.

UNIT IV 18 hours

PCR methods: Molecular probes production, labeling and applications. Sequencing by chemical and enzymatic method. Next generation sequencing. Blotting techniques- Southern, Northern and Western blotting. Analyzing DNA- principle of PCR. Types of PCR: inverse PCR, RT PCR, Nested PCR and colony PCR. **DNA Microarray analysis**. DNA finger printing- RFLP and RAPD.

UNIT V 18 hours

rDNA Application: Introduction to Gene therapy (*in vivo & ex vivo*), Antisense therapy. GMO's, BT cotton, production of Insulin, human growth hormone. New vaccine technology-Vaccine clinical trials- DNA vaccines- Recombinant Hepatitis vaccine, synthetic peptide vaccines and multivalent subunit vaccines. Safety guidelines of r-DNA research.

T.B-1 Sandhya Mitra, Genetic Engineering, Rajiv Beri Macmillan India Ltd, 1996.

T.B-2 Sathyanarayanan, Biochemistry, 3rd edition, Arunabha sen Pvt. Ltd, 2016.

UNIT I	Chapter VI	T.B-1
UNIT II	Chapter 2.7	T.B-1
UNIT III	Chapter 2.1,2.7,2.8	T.B-1
UNIT IV	Chapter VIII	T.B-2
UNIT V	Chapter 2.16, 2.18, 2.9	T.B-1

Books for Reference:

- 1. S.T. Desmond and Nicholl, An Introduction to genetic Engineering Cambridge University Press,1994.
- 2. S.C.H. Sussman, F.H. Coflms, Skimmer and D.E. Stewartful, The release of genetically engineered microorganisms, Academic Press, London, 1988.
- 3. J.D Watson, T.A. Baker, S.P. Bell, and Alexander Gann. Molecular Biology of the Gene, 5th edition, Benjanun/cummmgs Publishing Company Inc, New York, 2004.
- 4. C. Lenk, N. Hoppe and R. Andorno, Ethics and law of intellectual property: Current problems in politics, Science and technology, Ashgate publisher Pvt. Ltd. 2007.

Web reference:

- $1. https://www.abmgood.com/marketing/knowledge_base/next_generation_sequencing_introduction.php$
- 2. https://courses.lumenlearning.com/boundless-biology/chapter/biotechnology/

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		Title of the Paper Hours Cr						redits	
Ш	20]	PMB2CO	C6	GENETIC ENGINEERING				6 5			
Course Outcomes		Progran	nme Oı (POs)	utcomes	5	Pr	ogramı	mme Specific Outcomes (PSOs)			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	O2 PSO3 PSO4 PS			
CO1	✓	✓		✓	✓	✓	✓		✓	✓	
CO2	✓	✓		✓		✓	✓		✓		
CO3		✓	✓	✓	✓		✓	✓	✓	✓	
CO4		✓	✓	✓	✓		✓	✓	✓	✓	
CO5		✓	✓	√	✓	1 1 1					
	Number of Matches= 38, Relationship : Moderate										

Prepared by: 1. Dr.N.Reehana

Checked by:

1. Dr.M.Mohamed Mahroop Raja

2. Dr.A.Khaleel Ahamed

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
П	20PMB2CC7	Core – VII	ENVIRONMENTAL AND AGRICULTURAL MICROBIOLOGY	6	4	100	25	75

- 1. Identify the role of microbes and nutrient cycles prevailing in environment.
- 2. Apply the acquired knowledge on recycling of solid and liquid waste.
- 3. Acquire the basic idea of biodegradation and its applications.
- 4. Describe the mechanism of nitrogen fixation and nif gene regulation.
- 5. Design the production and applications of bioinoculants and biopesticides.

UNIT I 18 hours

Soil Microbiology: Soil profile and Soil Microbiology- Structure, Types, Physical and Chemical properties. Weathering and Humus formation, Soil pollution. Soil microbes- Types and Microbial interaction. Biogeochemical cycles and their sedimentary- Carbon, nitrogen, oxygen, hydrogen, phosphorous, *sulfur and iron*.

UNIT II 18 hours

Recycling of Liquid and Solid wastes: Characterisation and types of liquid waste management and treatment- Primary, Secondary treatment and Tertiary treatment. Characterization and types of solid waste-solid waste management and treatment- Silage, Pyrolysis and saccharification. *Composting and Biogas process and production*. Bioconversion of solid waste and utilization as fertilizer.

UNIT III 18 hours

Environmental Applications: Deterioration of paper, leather, woods, textiles and pharmaceutical products. Bioremediation, Biomagnification and Bioaccumulation. Bio degradation of complex polymers - cellulose, hemicelluloses, and lignin. Microbial leaching-copper and uranium. Xenobiotics degradation- Heavy metals, Radionuclides, Recalcitrants and Halogenated compounds. *Application of GIS and RS techniques in environmental monitoring**.

UNIT IV 18 hours

Diazotrophs: Ecology of diazotrophs. Biological fixation of nitrogen, Nitrogen fixation sites, symbiotic and nonsymbiotic nitrogen fixation. Mechanism of biological nitrogen fixation. Nitrogenase enzyme complex - azoferredoxin and molybdo ferrodoxin. Physiological electron donors and mechanism of nitrogen reduction, *regulation of nitrogenase enzyme*. Nif genes and its regulation. Role of hydrogenase enzyme in nitrogen fixation.

UNIT V 18 hours

Bioinoculants: Biofertilizers: Characteristics, Production and application of Rhizobium, Azotobacter, Azospirillum, Phosphate solublizing and mobilizing bacteria *Blue green algae*, Azolla and Mycorrhizae. Formulation of biofertilizer. Biopesticides- types, mechanism and application of Bacterial, Fungal and Viral insecticides.

T.B-1 K. Vijaya Ramesh, Environmental Microbiology, MJP Publishers, 2004.

T.B-2 P.Rajendran, Microbial Bioremediation, MJP Publishers, 2006.

UNIT I	Chapter V	T.B-2
UNIT II	Chapter V	T.B-2
UNIT III	Chapter VI	T.B-1
UNIT IV	Chapter III,V	T.B-1
UNIT V	Chapter VII	T.B-2

Books for Reference:

- 1. C.F. Forster, Biotechnology and Wastewater Treatment, Cambridge University Press, Cambridge, 1985.
- 2. W.D. Grant and P.L. Long, Environmental Microbiology, Blackie Glasgow, London, 1981.
- 3. N.F.Gray, Biology of waste water Treatment, Oxford University Press Oxford, 1989.
- 4. M.K. Rai, Handbook of Microbial biofertilizers, Food Products Press, New York, 2005.
- 5. M. Gareth, Evans and J.C. Furlong, Environmental Biotechnology Theory and Application, John Wiley and sons Ltd, 2003.

Web reference:

1.http://www.futuredirections.org.au/publication/living-soils-role-microorganisms-soil-health/

2. https://courses.lumenlearning.com/trident-boundless-microbiology/chapter/microbial-bioremediation/

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code			Title of th	e Paper		Hours		Credits	
II	201	PMB2CC	:7		ENVIRONMENTAL AND AGRICULTURAL MICROBIOLOGY 6					4	
Course		Progran	nme Ou	utcomes		Pi	rogramn	ne Specifi	C Outcom	es	
Outcomes			(POs)					(PSOs)			
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO4	PSO5			
CO1	✓		<	✓	✓	✓		✓	✓	✓	
CO2	✓	✓	✓		√	✓	✓	√		✓	
CO3		✓	✓	✓	✓		✓	✓	✓	√	
CO4	✓	✓	✓			✓	1 1 1				
CO5	✓	√	✓		✓ ✓ ✓ ✓						
	Number of Matches= 38, Relationship: Moderate										

Prepared by:

1. Dr.H. Vajiha Banu

Checked by:

- 1. Dr.M.Mohamed Mahroop Raja
- 2. Dr.A.Khaleel Ahamed

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
п	20PMB2CC8P	Core – VIII	MICROBIAL GENETICS AND MOLECULAR BIOLOGY, GENETIC ENGINEERING, ENVIRONMENTAL AND AGRICULTURAL MICROBIOLOGY PRACTICAL	6	4	100	25	75

- 1. Examine the isolation and characterization of plasmid and chromosomal DNA.
- 2. Demonstrate the principle and characterization of SDS PAGE.
- 3. Analyze the amplification of DNA by PCR.
- 4. Compare the estimation of BOD and COD in polluted water.
- 5. Identify the indicator organism and cellulase producing microorganism.

MICROBIAL GENETICS AND MOLECULAR BIOLOGY, GENETIC ENGINEERING

- 1. Scoring of mutants through physical agents.
- 2. Isolation and Characterization of chromosomal DNA.
- 3. Isolation and Characterization of plasmid DNA.
- 4. Restriction digestion of DNA
- 5. Principle and separation of protein gel electrophoresis (SDS PAGE).
- 6. Isolation of Protoplast and Spheroplast.
- 7. DNA amplification- PCR analysis.

ENVIRONMENTAL AND AGRICULTURAL MICROBIOLOGY

- 1. Determination of BOD of polluted / pond water.
- 2. Determination of COD of polluted / pond water.
- 3. Assessment of water quality by MPN technique.
- 4. Isolation of cellulase producing microbes from soil.
- 5. Algae as indicators of water pollution.

Practical manual

- 1. T.A. Brown, Essential Molecular Biology A Practical approach, Oxford University Press, Oxford, 1991.
- 2. K.R. Aneja, Experiments in Microbiology, Plant pathology and Biochemistry, 4th edition, New age International publishers, India, 2003.
- 3. Cappuccino and G. James, Microbiology a laboratory manual, 4th edition, Addison Wesley Publishing Company Inc. California, 1996.
- 4. J. Jayaraman, Laboratory Manual in Biochemistry, 2nd edition, Newage publication, 2011
- 5. R.M. Atlas and R. Bortha, Microbial Ecology Fundamentals and Application, 4th edition, LPE Pearson Education, Inc, 2005.

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code		7	Title of th	e Paper		С	redits			
П	201	PMB2CC	C8	MO GEN EN	CROBIAL GENETICS AND COLECULAR BIOLOGY, ENETIC ENGINEERING, NVIRONMENTAL AND AGRICULTURAL ROBIOLOGY PRACTICAL					4		
Course		Progran		utcomes	;	Pr	ogram	me Specifi	c Outcom	utcomes		
Outcomes (COs)			(POs)					(PSOs)				
(COS)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5		
CO1	✓		✓	✓	✓	✓		/	✓	✓		
CO2	✓	√		✓	✓	✓	✓		√	✓		
CO3			✓	✓	✓			✓	✓	✓		
CO4	✓		✓		✓	✓		✓		✓		
CO5	✓		✓	✓	✓	✓		1 1				
	Number of Matches= 36, Relationship : High											

Prepared by:

1. Dr.N.Reehana

Checked by:
1. Dr.M.Mohamed Mahroop Raja
2. Dr.A.Khaleel Ahamed

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
II	20PMB2DE2A	DSE – II	MICROBIAL ECOLOGY	6	4	100	25	75

- 1. Describe the distribution and association of microorganisms in microbial environment.
- 2. Acquire the knowledge of aerobic atmosphere, air sampling devices and airborne diseases.
- 3. Analyze the various techniques used to treat aquatic microbes.
- 4. Demonstrate the microbiological examination of water and indicator organism.
- 5. Acquire the knowledge of genetic population and genetic variation of microbial ecology.

UNIT I 18 hours

Microbial environment: Distribution and communities of microbial environment- Factors influencing the microbial density in soil- zymogenous and autochthonous flora in soil- Microbial associations- symbiotic proto cooperation, Ammensalism, Commensalism, Syntropism, Parasitism and Predation with suitable examples. Methods of studying microbial ecosystem. *Biological equilibrium. * Meaning of succession: Tolerance and inhibition patterns of succession, theories of succession.

UNIT II 18 hours

Aero Microbiology: Stratification of atmosphere. Microbial contamination of air- Sources of contamination-Biological indicators of air pollution. Droplet and Droplet Nuclei. Enumeration of bacteria from air, air sampling devices. Significance of air microflora, Outline of airborne diseases (Bacterial - Whooping cough, Diphtheria, Pneumonia; Fungal- Aspergillosis, Cryptococcosis; Viral- Chickenpox, Influenza, Measles). *Air sanitation*.

UNIT III 18 hours

Aquatic Microbiology: Fresh and marine water zone. Microbial ecology of lakes, ponds, rivers, stream, ground water wetland, Factors affecting the microbial population. Techniques for the study of aquatic microbes. Eutrophication- *factors controlling eutrophication*. Water treatment: preliminary- aeration, sedimentation, coagulation and flocculation. Filtration- rapid and slow sand filters and Microfilters.

UNIT IV 18 hours

Microbiology of potable water: Water quality measures: guideline, methods, identification and validation. Bacteriological techniques for the examination of water- MPN index. Indicators of faecal pollution. Waterborne disease: Enteric bacteria (indicators and pathogens) Opportunistic pathogens: *Legionella, Vibrio* and *Staphylococcus*. Viruses: *Polio, adenovirus*, and *Rotavirus*. Protozoa: *Giardia, Cryptosporidium* and *Toxoplasma*. Pathogens source tracking and disinfection.

UNIT V 18 hours

Ecology and Genetics: Genetic structure of population:-Genotype frequency, allele frequencies. Hardy-Weinberg Law: Assumptions, predictions, derivation, extension and natural selection. Measuring genetic variation at protein level, measuring genetic variation at DNA level. *Factors effecting gene frequencies*: Mutation, Random genetic drift, migration, Hardy-Weinberg natural selection, Assortative mating and Inbreeding.

- **T.B-1** N. S. Subrahmanyam and A. V. S. S. Sambamurthy, Ecology, Narosa Publishing House, 2000.
- **T.B-2** H. D. Kumar, General Ecology, Vikas Publishing House, 1995.
- **T.B-3** P. K. Gupta, Genetics, Rastogi publications, 2001.
- T.B-4 M. Ahamed, S. K. Basumatary, Applied Microbiology, MJP Publishers, 2006.

UNIT I	Chapter I, XVI	T.B- 1
UNIT II	Chapter XI	T.B- 2
UNIT III	Chapter XXIII	T.B- 2
UNIT IV	Chapter XIV, XXI - XXIII	T.B- 3
UNIT V	Chapter VII	T.B- 4

Books for Reference:

- 1. G. Reiheimer, Aquatic Microbiology, 4th edition, John Wiley & Sons Inc. 1991.
- 2. W.D. Grant and P.L. Long, Environmental Microbiology, Blackie Glasgow, London, 1981.
- 3. R. Campbell, Microbial Ecology, 2nd edition, Blackwell publication, 1983.

Web reference:

- 1. https://www.onlinebiologynotes.com/microbial-ecology-and-role-of-microorganism-in-ecosystem/
- 2. https://www.studocu.com/en/document/university-of-nevada-reno/intro-to-microbiology/lecture-notes/study-ch-21-microbial-ecology/1063573/view
- 3. https://www.soinc.org/sites/default/files/uploaded_files/4 17_microbes_and_ecology.pdf

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code			Title of th	e Paper	Paper Hours			Credits	
II	20P	MB2DE2	2A	MIC	ROBIAL	ECOLOG	Y	6		4	
Course Outcomes		Progran	nme Ou (POs)	utcomes		Programme Specific Outcomes (PSOs)					
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	
CO1	✓			✓	✓	✓			✓	√	
CO2	✓	✓		✓	✓	✓	✓		√	✓	
CO3		\		\	√		✓		✓	✓	
CO4		>	>	\	✓	✓ ✓ ✓					
CO5	√	√		√	✓ ✓ ✓ ✓						
					Numbe	r of Matc	hes= 3	4, Relation	nship : N	loderate	

Prepared by:

1. Dr.N.Reehana

Checked by:

- 1. Dr.M.Mohamed Mahroop Raja
- 2. Dr.A.Khaleel Ahamed

Semester	Code	Course	Title of the Course	Hours	Credits	Max. Marks	Internal Marks	External Marks
			BIOREMEDIATIO					
II	20PMB2DE2B	DSE – II	N AND WASTE	6	4	100	25	75
			MANAGEMENT					

- 1. Analyse various wastes and associated risks on environment.
- 2. Apply the knowledge on recycling and disposal of wastes.
- 3. Examine the types of soil treatment and methods of aerobic bioremediation.
- 4. Identify the process of anaerobic bioremediation.
- 5. Assess the methods of radioactive and hazardous wastes.

UNIT I 18 hours

Waste Classification and Quantification: Solid waste management and disposal: Sources and generation of solid waste- characterization, composition and classification. Hazardous waste management: Cyanides, Dioxins, Detergents, Plastics, Nylon and Paper. **Waste minimization approaches – Monitoring and management strategies**.

UNIT II 18 hours

Recycling of Wastes: Types- sources- composition of waste- recycling of waste for Industrial, Agricultural and Domestic Purposes; Recycling of Metals, Reuse, recovery and reduction of paper and plastics; Recycling in Food Manufacturing, Beverages, Apparel, Leather, Paper, Pulp, Chemical and other industries; Fly Ash utilization. *Waste Disposal Methods- composting, incineration, pyrolysis, medical waste disposal strategies*.

UNIT III 18 hours

Aerobic Bioremediation: Bioremediation of surface soils: Fate and transport of contaminants in the Vadose zone- *Biodegradation in soil ecosystems*- Types of soil treatment systems-Bioreactors. Subsurface Aerobic Bioremediation: Selection of bioremediation system- *in situ* Bioremediation- *in situ* Bioventing- *in situ* treatment of Harbour Sediments- *in situ* Lagoon treatment.

UNIT IV 18 hours

Anoxic/Anaerobic Bioremediation: Anoxic/Anaerobic Environment - Potential anaerobic Bioremediation - Anoxic/Anaerobic Processes - Fermentation, Degradation of Polycyclic Aromatic Hydrocarbons (PAH), Heterocyclic Compounds and Cyanide Remediation. Factors affecting bioremediation - Bench Scale and Pilot Scale studies - *in situ* Bioreactor treatment of sediments - **in situ* Bioremediation of contaminated lagoon sediment**.

UNIT V 18 hours

Radioactive Waste: Sources, half life of radioactive elements, modes of decay. Effects on Plants, Animal and Man. Low and High-level Radioactive Waste Management – Waste Minimization and Treatment. Radiation standards. Legislation, Regulation and Policy - Current Regulations and programs of interest – *Hazardous Waste Management Act*.

T.B-1 K. Vijaya Ramesh, Environmental Microbiology, MJP Publishers, 2004.

T.B-2 P. Rajendran, Microbial Bioremediation, MJP Publishers, 2006.

UNIT I	Chapter VII	T.B- 2
UNIT II	Chapter V	T.B- 2
UNIT III	Chapter VI	T.B-2
UNIT IV	Chapter III,V	T.B- 1
UNIT V	Chapter VII	T.B- 1

Books for Reference:

- 1. M.D. LaGrega, P.L. Buckingham and J.C. Evans, Hazardous Waste Management, IInd edition, McGraw Hill, 2001.
- 2. T. Leisinger, A.M. Cook, R. Hutter and J. Nuesch, Microbial Degradation of Xenobiotics and Recalcitrant Compounds, Academic Press, London, 1981.

Web reference:

- $1.\ http://www.yourarticlelibrary.com/waste-management/solid-waste-management-types-sources-effects-and-methods-of-solid-waste-management/9949$
- $2. \ http://www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Nuclear-Wastes/Radioactive-Waste-Management/\\$

Relationship Matrix for Course Outcomes, Programme Outcomes and Programme Specific Outcomes:

Semester		Code			Title of th	e Paper	С	redits				
II	20F	PMB2DE2	2B			NAGEMENT 6 4					4	
Course Outcomes		Progran	nme Ou (POs)	utcomes		Р	rograr	•	ecific SOs)	Outcom	nes	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO					
CO1	✓	✓		✓	✓	✓	✓			✓	✓	
CO2	✓	✓		✓	✓	√	✓			✓	✓	
CO3	✓	✓		√	✓	✓	✓			✓	✓	
CO4	√	✓			√	√	✓				✓	
CO5		√		✓		✓ ✓						
	Number of Matches= 34, Relationship : Moderate											

Prepared by:

1. Dr.M.Mohamed Mahroop Raja

Checked by:

- 1. Dr.N.Reehana
- 2. Dr.A.Khaleel Ahamed