DEPARTMENT OF PHYSICS

COURSE STRUCTURE & SYLLABI

(For the students admitted from year 2023-2024 onwards)

Programme : M.Sc. Physics

JAMAL MOHAMED COLLEGE (AUTONOMOUS)

Accredited with A++ Grade by NAAC (4th Cycle) with CGPA 3.69 out of 4.0 (Affiliated to Bharathidasan University)

TIRUCHIRAPPALLI – 620 020

M.Sc. PHYSICS

Sem	Course Code	Course Category	Course Title	Ins. Hrs/	Credit	Ma	ırks	Total
Sem	course coue	Course category	Course Title	Week	Creare	CIA	ESE	1000
	23PPH1CC1	Core - I	Classical Mechanics	6	5	25	75	100
-	23PPH1CC2	Core - II	Mathematical Physics	6	5	25	75	100
•	23PPH1CC3	Core - III	Electronic Devices and Circuits	6	5	25	75	100
I	23PPH1CC4P1	Core - IV	Advanced General Physics - I - Practical	3	2	10	40	50
	23PPH1CC4P2	Cole - IV	Advanced General Physics - II - Practical	3	2	10	40	50
	23PPH1DE1A/B	Discipline Specific Electives - I		6	4	25	75	100
			Total	30	23			500
	23PPH2CC5	Core - V	Advanced Mathematical Physics	6	5	25	75	100
	23PPH2CC6	Core - VI	Molecular Spectroscopy	6	5	25	75	100
	23PPH2CC7	Core - VII	Electromagnetic Theory	6	5	25	75	100
II	23PPH2CC8P1	Core - VIII	Condensed Matter Physics - Practical	3	2	10	40	50
	23PPH2CC8P2	Cole - VIII	Analog Electronics - Practical	3	2	10	40	50
	23PPH2DE2A/B	Discipline Specific Electives - II		6	4	25	75	100
-	23PCN2CO	Community Outreach	JAMCROP	-	@	-	-	@
	[®] Only grade will b	30	23			500		
	23PPH3CC9	Core - IX	Nuclear and Particle Physics	6	6	25	75	100
-	23PPH3CC10	Core - X	Quantum Mechanics	6	5	25	75	100
	23PPH3CC11	Core - XI	Statistical Mechanics	6	5	25	75	100
III	23PPH3CC12P1		Digital Electronics - Practical	3	2	10	40	50
	23PPH3CC12P2	Core - XII	Numerical Programming in Physics using Python - Practical	3	2	10	40	50
<u> </u>	23PPH3DE3A/B	Discipline Specific Electives - III		6	4	25	75	100
	23PPH3EC1	Extra Credit Course - I*	Online Course	-	*	-	-	-
			Total	30	24			500
	23PPH4CC13	Core - XIII	Condensed Matter Physics	6	6	25	75	100
	23PPH4CC14	Core - XIV	Electronic Communication	6	6	25	75	100
	23PPH4CC15P1	Core - XV	Microprocessor and Microcontroller - Practical	3	3	10	40	50
IV	23PPH4CC15P2	Core - AV	Numerical Simulations in Physics using Python - Practical	3	2	10	40	50
	23PPH4DE4A/B	Discipline Specific Electives - IV		6	4	25	75	100
	23PPH4PW	Project Work	Project Work	6	4	-	100	100
	23PCNOC	Mandatory online course**	Online Course	-	1	-	100	100
	23PPH4EC2	Extra Credit Course - II*	Online Course	-	*	-	-	-
		ic Online Course for Advanced Lease for Enhancing Additional Skills	Total	30	26			600
	•	-	Gran	d Total	96			2100

DISCIPLINE SPECIFIC ELECTIVE

Semester	Course Code	Discipline Specific Elective			
T	23PPH1DE1A	Medical Physics and Ultrasonics			
1	23PPH1DE1B	Advanced Topics in Physics			
II 23PPH2DE2A		Computations in Physics Using Python			
11	23PPH2DE2B	Nanoscience and Technology			
III	23PPH3DE3A	Microprocessor and Microcontroller			
	23PPH3DE3B	Nonlinear Optics			
IV	23PPH4DE4A	Crystal Growth and Thin Films			
1 V	23PPH4DE4B	Fibre Optics and its Applications			

Semester	Course Code	Course Category	Hours/	Credits	Marks for Evaluation			
Semester	Course Code	Course Category	Week	Credits	CIA	ESE	Total	
I 23PPH1 CC1		CORE – I	6	5	25	75	100	
Course Ti	tle	CLASSICA	AL MECH	ANICS				

	SYLLABUS					
Unit	Contents	Hours				
I	Lagrangian Dynamics: Constraints — generalized co-ordinates — principle of virtual work — D'Alembert's principle — Lagrange's equation from the D' Alembert's principle — Newton's equation of motion from the Lagrange's equation- *Superiority of Lagrangian mechanics over Newtonian approach* Derivation of Lagrange's equation from the Hamilton's principle — Applications: Simple pendulum — Double pendulum — Atwood's machine — motion under Central Force — series LC circuit	18				
II	Two-Body Central Force Problem Reduction of two-body central force problem to the equivalent one-body problem — Central Force and motion in a plane — Equations of motion under Central Force and first integrals — Differential equation for an orbit — *Inverse square law of force * — Kepler's laws of planetary motion and their deduction	18				
Ш	HamiltonianDynamics Cyclic Coordinates – Hamilton's equations – Applications: Simple Pendulum – Compound Pendulum – Canonical transformations – Legendre transformations – Generating functions – fundamental properties of Poisson's brackets* – The Hamilton – Jacobi equation – solution of Harmonic oscillator problem by Hamilton – Jacobi method – Action and angle variables – Kepler's problem in Action – *Angles variables*	18				
IV	Small Oscillations and Rigid-body Dynamics General theory of small oscillations — Equation of motion for small oscillations — solution of Eigen value equations — normal co-ordinates and normal frequencies of vibration — *vibrations of a linear triatomic molecule*. Euler's angle — equation of motion of rigid body — Euler's equations — motion of a symmetric top under the action of gravity	18				
V	Stability analysis of Linear and Non Linear systems Dynamical System: Linear and nonlinear systems — superposition principle — effects of nonlinearity — linear and nonlinear oscillators — *Autonomous and non-autonomous systems*— Equilibrium points and their classification — Stability analysis of damped cubic anharmonic oscillator — Bifurcation Scenario in Duffing Oscillator	18				
VI	Current Trends (For CIA only) Recent developments in classical dynamical systems: Stochastic resonance - controlling of chaos - synchronization of chaos - chaot masking - transmission of chaotic signals: analogue and digital	tic signal				

..... Self Study

Text Book(s):

1. 1. J.C. Updhaya, Classical Mechanics, Himalaya Publishing House, 2005

Unit – I: Section 2.3 – 2.7, 2.8 (Examples: 2, 3,7& 8), 2.11, 2.12

Unit – II: Section 3.2, 3.5,3.7, 5.3, 5.5, 5.11

Unit – III: Section 6.3,7.2, 7.6, 8.2,8.3,8.4,8.5

Unit – IV: Section 9.2, 9.4, 9.6, 10.3,10.7, 10.14

2. M.Lakshmanan and S.Rajasekar: Nonlinear Dynamics:Integrability, Chaos and Patterns, Springer 2003

Unit – V: Section 1.1, 1.2, 1.3, 1.4, 2.1, 2.2, 2.3, 2.4 3.1, 3.2 3.3, 3.4

Unit VI: 9.2, 9.4 9.5

Reference Book(s):

- 1. H.Goldstain, Classical Mechanics, Narosa Publishing House, 2005
- 2. N.C.Rana and P.S.Joag, Classical Mechanics, Tata McGraw. Hill, 1991
- 3.M.Lakshmanan and K. Murali Chaos in Nonlinear Oscillators: Controlling and Synchronization, World Scientific

Web Resource(s):

https://classcentral.com/course/swayam-theoritical-mechanics-14332 www.physics.iisc.ernet.in

	Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	Remembering the basic theory of Newtonian Mechanics and stimulating to think the need of new concepts	K1					
CO2	Demonstrate the different methods and new ideas to overcome the limitations in the Newtonian mechanics. Analyse these methods and select an appropriate one to derive a mathematical model for a given physical system	K2					
CO3	Applications of action and angle variables and canonical transformation	К3					
CO4	Analyse the normal modes of small oscillations and the dynamics of a rigid body	K4					
CO5	Debate the need of nonlinear studies and its recent developments. Create the circuit diagrams for dynamical problems in the wide research area	К6					

Relationship Matrix:

Course	Pro	gramm	e Outco	omes (P	Os)	Progra	Mean Score of				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	3	3	3	3	2	2	3	2.8
CO2	3	3	3	2	3	2	2	3	3	3	2.7
CO3	3	3	3	3	3	3	2	2	3	2	2.7
CO3	3	3	3	3	2	3	3	3	3	3	2.9
CO5	3	3	2	3	3	3	3	2	3	3	2.8
		•		•	•	•	•	Mea	an Overa	all Score	2.78
									Cor	relation	HIGH

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and $<$ 2.5	Medium
≥ 2.5	High

Course Coordinators: Dr. R. Radhakrishnan

Mr. S. Mohamed Ibrahim Sulaiman Sait

Semester	Course Code	Course Category	Hours/	Credits	Marks for Evaluation			
Semester	Course Code	Course Category	Week	Credits	CIA	ESE	Total	
I	23PPH1CC2	CORE – II	6	5	25	75	100	

Course Title | MATHEMATICAL PHYSICS

	SYLLABUS	
Unit	Contents	Hours
I	Vector Analysis Orthogonal curvilinear coordinates-Differential operators interms of Orthogonal curvilinear coordinates-Gradient, divergence, *curl and Laplacian* – Spherical polar coordinates and differential operators-Gradient, divergence, curl, and Laplacian -Cylindrical coordinates and differential operators Gradient, divergence, curl, and Laplacian – applications: – Euler's equation of motion – Bernoulli's equation	18
II	Linear Vector Space and Matrices Linear Vector Space: definition – linear independence of vectors and Dimensions, basis and expansion theorem – inner product and unitary spaces - orthonormal set - Schwartz Inequality-Gram-Schmidt's orthogonalization process -completeness Special types of matrices – transpose of a matrix – the conjugate transpose – Hermitian and skew-Hermitian matrices – orthogonal matrices – trace of a matrix – eigen values and eigen vectors – Characteristic equation of a matrix -Cayley-Hamilton theorem – power of a matrix – *matrices in physics*	18
III	Tensors n-dimensional space – superscripts and subscripts – *coordinate transformations* – indicial and summation conventions – dummy and real indices – Kronecker delta symbol – scales, contravariant vectors and covariant vectors – tensors of higher ranks – algebraic operations of tensors – symmetric and anti symmetrictensors – Line element: metric tensor- Christoffel's 3 index symbols – Applications – tensors in dynamics of a particle-work energy	18
IV	Complex Variables Analytic function — Cauchy — Riemann differential equation-*Harmonic functions*- Cauchy's Integral formula —Taylor's series — Residues and their evaluation of residues—Cauchy Residue theorem—evaluation of improper definite integrals	18
v	Probability, Statistics and theory of errors Binomial theorem of probability –multinomial theorem of probability-Laplace-demoivre limit theorem- measures of central tendency, averages-*measures of dispersion*-Karl Pearson's coefficient of correlation-theory of errors-most probable value and residual –Gaussian error curve	18

^{*.....*} Self Study

Text Book:

1. SathyaPrakash, Sultan Chand & Sons, Mathematical Physics, 7th edition, New Delhi,2011

Unit-I: Section 1.15 – 1.19

Unit-II: Section 1.18,2.10,2.17,2.19,2.31,2.37,2.39

Unit-III: Section 3.2-3.11, 3.16,3.20,3.38

Unit-IV: Section 6.9-6.11, 6.14,6.16,6.20, 6.23-6.25

Unit-V: Section 12.7-12.25

Reference Books

1.P.K. Chattopadhyay, Mathematical Physics, New Age International, New Delhi, 1990

2. Charlie Harper, Introduction to Mathematical Physics, PHI,New Delhi,2006

Web Resources:

- 1. https://freevideolectures.com/course/3536/selected-topics-in-mathematical-physics
- 2. https://www.perimeterinstitute.ca/video-library/collection/11/12-psi-mathematical-physics
- 3. http://mediacore.ictp.it/media/mathematical-methods-lecture-1-of-34

Online Course Reference

Unit V:https://swayam.gov.in/nd1_noc20_ph03/preview

	Course Outcomes							
Upon suc	Upon successful completion of this course, the student will be able to:							
CO No.	CO Statement	Cognitive Level (K-Level)						
CO1	Apply the concepts of linear vector spaces, orthogonalization process, matrices and matrix manipulations	К3						
CO2	Make use of the concepts of complex analysis	К3						
CO3	Analyze the orthogonal curvilinear coordinates, gradient, divergence, curl and Laplacian operators	K4						
CO4	Prove the Cauchy-Riemann condition, calculus of residues and evaluation of definite integrals	К5						
CO5	Develop the knowledge of the statistical tools and statistical distributions	К6						

Relationship Matrix:

Course	Pro	gramm	e Outco	omes (P	Os)	Progra	Mean Score of				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	2	2	2	1	2	2	2	2.2
CO2	2	3	3	2	2	2	1	3	3	2	2.3
CO3	2	2	2	3	3	2	3	3	2	2	2.4
CO4	2	3	2	3	2	1	2	3	2	3	2.3
CO5	2	3	3	3	3	3	2	1	2	2	2.4
								Me	an Overa	all Score	2.32
									Cor	relation	Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and \leq 2.5	Medium
≥ 2.5	High

Course Coordinators: Dr.A. ISHAQ AHAMED Dr.R. RAJ MUHAMED

Somostor	Course Code	Course Category	Hours/	Credits	Marks for Evaluation		
Semester	Course Code	Course Category	Week	Credits	CIA	ESE	Total
I	23PPH1CC3	CORE – III	6	5	25	75	100
Course Ti	tle	ELECTRONIC DEVICES	S AND CII	RCUITS			

	SYLLABUS	
Unit	Contents	Hours
I	SOLID STATE DEVICES Construction, Operation and V-I Characteristics of Special devices: Tunnel diode – Gunn diode –MOSFET – Enhancement MOSFET- SCR – SCR half-wave rectifier – SCR Full-wave rectifier –TRIAC–DIAC – *UJT*	18
II	OPERATIONAL AMPLIFIER APPLICATIONS Instrumentation amplifier—Op-Amp circuits using diodes: Half-wave rectifier, Full-wave rectifier, *Clipper and clamper circuits* — Logarithmic and antilogarithmic amplifiers — Multipliers — Dividers — Differentiators — Integrators — Electronic analog computation: simulation of 2 nd order differential equation— Simulation of transfer function	18
Ш	COMPARATORS, WAVEFORMGENERATORSANDFILTERS Comparators—Applications of Comparators: Zerocrossingdetector— Windowdetector—Schmitttrigger—AstableMultivibrator—Monostable Multi- vibrator—Triangular wave generator — RC phase-shift oscillator—Wien's bridge oscillator—RC active filters: First-order low-pass, *High-pass* — Band-pass—Wide band-pass filter	18
IV	555 TIMERANDPHASE–LOCKED LOOPS (PLL) Description and functional diagram of 555 Timer - Monostable operation— Applications – Frequency divider – Astable operation – Applications – Frequency Shift Keying (FSK) generator – PLL Basic principle – Analog phase detector— Digital phase detector—*Voltage controlled oscillator (VCO)* – PLL applications— frequency multiplication /division—frequency translation.	18
V	OPTOELECTRONIC DEVICES Construction and Characteristics of Optoelectronic devices: Photoconductive Cell- Photoconductive Sensors, Applications: Photodiode, Phototransistor – , Photovoltaic Cell - Solar Cell - Photovoltaic Sensors - Photoemissive Sensors - Vacuum Phototube-Gas-Filled Phototube - Photomultiplier - *Light Emitters - Light-Emitting Diode, Infrared Emitters*	18

^{*....*} Self Study

1.S.Salivahanan, N.SureshKumar, Electronic Devicesand Circuits, McGraw Hill Education Pvt., Limited, Chennai, Fourth Edition, 2019.

Unit-I: Section 5.8, 5.9, 7.10, 7.11, 8.3, 8.5, 8.7, 8.8, 17.2

Unit-V: Section 22.3 – 22.6.2

2. D. Roy Choudhury and Shail B.Jain, Linear Integrated Circuits, New Age International Publishers, Fourth Edition, 2015.

Unit–II: Section 4.3,4.6, 4.6.1 – 4.6.5,4.7–4.12

Unit-III: Section 5.1, 5.2, 5.2.1, 5.3, 5.4 – 5.7,7.2,7.2.1,7.2.4,7.2.5

Unit-IV: Section 8.1–8.3,8.3.1, 8.4, 8.4.1, 9.2, 9.3.1, 9.3.2, 9.4, 9.7,9.7.1,9.7.2

Unit-VI:Section 1.6 – 1.8

Reference Books:

- 1. V.K. Mehta, Rohit Mehta, Principles of Electronics, S. Chand Publications, Reprint2016.
- 2. RamkantA.Gayakwad,Op-AmpsandLinearIntegratedCircuits,PrenticeHallofIndia, 4thEdition 2015.

Web Resources:

- 1. https://www.physics-and-radio-electronics.com/electronic-devices-and-circuits/semiconductor-diodes/tunneldiode-howitworks.html
- 2. https://www.tutorialspoint.com/linear_integrated_circuits_applications/linear_integrated_circuits_applications_rectifiers.htm#

	Course Outcomes									
Upon suc	Upon successful completion of this course, the student will be able to:									
CO No.	CO Statement	Cognitive Level (K-Level)								
CO1	Recall and Explain the basics of solid state devices and integrated circuits applications	K2								
CO2	Utilize the applications of optoelectronics in modern gadgets	K3								
CO3	Analyze the working of electronic analog computation using operation amplifier	K4								
CO4	Influence on the various process of integrated circuit fabrication	K5								
CO5	Construct the circuits of op-amp based rectifiers and waveform generators	K6								

Relationship Matrix

Course Outcomes (COs)	Pro	gramme	e Outco	mes (P	Os)	Progr	Mean Score of				
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	2	2	1	3	2	2	3	1	2	3	2.1
CO2	2	3	1	2	3	2	3	2	3	2	2.3
CO3	2	3	2	3	2	1	3	2	1	3	2.2
CO4	3	2	3	2	1	3	2	3	2	3	2.4
CO5	3	2	3	3	2	3	2	2	3	1	2.4
	Mean Overall Score										2.28
	Correlation										

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and \leq 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. S. Shek Dhavud

Mr. S. Mohamed Ibrahim Sulaiman Sait

Semester	Course Code	Course Cotegowy	Hours/	Credits	Marks for Evaluation			
Semester	Course Code	Course Category	Week	Credits	CIA	ESE	Total	
I	23PPH1CC4P1	CORE – IV	3	2	10	40	50	
Course Title ADVANCED GENERAL PHYSICS - I - PRACTICAL								

List of Experiments:

- 1. Determination of Young's, Rigidity modulus and Poission's ratio by hyperbolic fringes method.
- 2. Magneto resistance of a semiconductor.
- 3. Millikan's oil drop method Charge of an electron.
- 4. Measurement of wavelength of monochromatic light using Fresnel's Biprism.
- 5. Fourier Analysis of Periodic Waveforms.
- 6. Determination of magnetic susceptibility by Quincke's method.
- 7. B-H Curve Determination of the energy loss of a magnetic specimen.
- 8. Measurement of wavelength of monochromatic light using Michelson's interferometer.

Books for Reference:

- 1.M.N. Srinivasan, S. Balasubramaniyan, R. Ranganathan, A text book of Practical Physics, S.Chand&Sons, Reprint 2010.
- 2.C.C. Ouseph, U.J. Rao& V. Vijayendran, Practical physics and electronics, S. Viswanathan, Pvt,Ltd, First Edition, 2007.

Web Reference:

www.physicstutoruials.org www.sciencelearn.org.nz

	Course Outcomes							
Upon suc	Upon successful completion of this course, the student will be able to:							
CO No.	CO Statement	Cognitive Level (K-Level)						
CO1	Recall the basic principles of properties of , elasticity and magnetism	K2						
CO2	Make practical skills essential for experimentation.	К3						
CO3	Analyze experimental approaches to correlate with physics theory to develop practical understanding.	K4						
CO4	evaluate the Fourier Transforms and Fourier Decomposition of waves	K5						
CO5	create the ideas required for their higher studies	K6						

Relationship Matrix:

Course	Pro	gramm	e Outco	omes (P	Os)	Progra	Mean				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs
CO1	3	3	3	2	2	2	1	2	2	2	2.2
CO2	2	3	2	3	2	2	2	2	3	2	2.3
CO3	2	2	2	3	3	2	3	3	2	2	2.4
CO4	2	1	2	2	2	2	2	3	2	2	2.0
CO5	2	3	3	2	3	3	2	1	2	2	2.3
	Mean Overall Score										2.22
	Correlation										

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and $<$ 2.5	Medium
≥ 2.5	High

Course Coordinator: Dr. R. Raj Mohamed

Compaton	C	ounce Code	Caura Catagory	Hours/	Credits	Marks for Evaluation		
Semester	Course Code		Course Category	Week	Creans	CIA	ESE	Total
I	23F	PPH1CC4P2 CORE – IV		3	2	10	40	50
Course Ti	tle	ADVANCED	GENERAL PHYSICS - II	- PRA	CTICAL			

List of Experiments:

- 1. Hartmann's formula: Determination of wavelength of spectral lines.
- 2. Ultrasonic Diffraction Bulk modulus.
- 3. Charge of an electron by spectrometer.
- 4. "g" factor determination ESR spectrometer.
- 5. Hollow Prism: Polarizability of liquids.
- 6. Determination of Stefan's constant.
- 7. Thermal conductivity and Lorentz number determination Forbe's method.
- 8. Verification of Richardson Dushmann equation: Thermionic work function.

Books for Reference:

- 1.M.N. Srinivasan, S. Balasubramaniyan, R. Ranganathan, A text book of Practical Physics, S.Chand&Sons, Reprint 2010.
- 2.C.C. Ouseph, U.J. Rao& V. Vijayendran, Practical physics and electronics,
 - S. Viswanathan, Pvt,Ltd, First Edition, 2007.

Web References:

www.physicstutoruials.org www.sciencelearn.org.nz

	Course Outcomes									
Upon suc	Upon successful completion of this course, the student will be able to:									
CO No.	CO No. CO Statement									
CO1	Recall the basic principles Optics, Thermal Physics, Polarization and spectrometry	K2								
CO2	Make practical skills essential for experimentation.	К3								
CO3	Analyze initial adjustments of the equipments.	K4								
CO4	CO4 evaluate application of the experimental skills developed to solve newer problems									
CO5	create the ideas to establish new experiments	K6								

Relationship Matrix:

Course	Pro	gramm	e Outc	omes (F	POs)	Progra	Mean				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs
CO1	3	3	3	2	2	2	1	2	2	2	2.2
CO2	2	3	2	3	2	2	2	2	3	2	2.3
CO3	2	2	2	3	3	2	3	3	2	2	2.4
CO4	2	2	2	2	2	2	1	3	3	3	2.2
CO5	2	3	3	2	3	3	2	1	2	2	2.3
Mean Overall Score											2.28
Correlation											Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and $<$ 2.5	Medium
≥ 2.5	High

Course Coordinator: Dr. A. Ishaq Ahamed

Comeston	Course Code	Course Category	Hours/		Marks for Evaluation				
Semester	Course Code	Course Category	Week	Credits	CIA	ESE	Total		
I	23PPH1DE1A	DISCIPLINE SPECIFIC ELECTIVES – I	6	4	25	75	100		
Course Title MEDICAL PHYSICS AND ULTRASONICS									

	SYLLABUS				
Unit	Contents	Hours			
I	Bio-potential Electrodes and Recorders Components of biomedical instrument system – Electrodes – Bio-potential recorder – Characteristics of the recording system – Electrical signals from the heart: Electrocardiography (ECG) – Phonocardiography recording set-up – Electrical signal from muscles: Electromyogram (EMG) – Electrocardiogram – *Magnetic Resonance Imaging (MRI): Principle and instrumentation*	18			
II	Physiological Assist Devices and Operation Theatre Equipments Pacemaker – Defibrillator – AC and DC defibrillators – Dialysis – Hemodialysis and peritoneal dialysis – Comparison of hemodialysis and peritoneal dialysis – Short-wave diathermy – Microwave diathermy – Ultrasonic diathermy – *Anesthesia machines* – Digital pH meter – vitro oximetry – *Electro diagnostic/therapeutic stimulators *	18			
Ш	Laser Based Diagnostic Methods and Nuclear Therapy Laser based blood cell counter – Laser doppler blood flow meter – Principle and theory of fluorescence – Tumor tissue diagnosis methods: Laser-induced fluorescence spectroscopy – Diffused reflectance spectroscopy – Light scattering spectroscopy – *Raman spectroscopy* – Photodynamic therapy of tumors – Nuclear therapy: Teletherapy (Co ⁶⁰) –Brachytherapy	18			
IV	Ultrasonic Testing Classification of Ultrasonic Non-Destructive Testing – *Ultrasonic Testing* – Advantages – Disadvantages – Classification of Ultrasonic Testing: Pulse Echo – Contact testing – Through transmission – Immersion – Pitch-Catch or Tandom – Different types of techniques in Pulse Echo Method – Flaw Detector – Application of Flaw Detectors: A and B scans and thickness gauging				
v	Underwater Acoustics Fundamentals of Underwater Acoustics: Physical and Chemical properties — Sound properties — Boundaries — Biological organisms — Classification of instruments: Salinity, temperature and depth measurements — Flow measurements — Sound velocity —SONAR — *Multibeam Sonar *— Applications: Depth of Sea — Fisheries — Acoustic Exploration for Mining	18			

..... Self Study

Text Book(s):

- 1. Dr.M.Arumugam, Biomedical Instrumentation, Second Edition, Anuradha Publications, Chennai, Reprint 2017.
- 2. A.G. Patil, Medical Electronics, First Edition, Excel books, New Delhi, 2003.
- 3. S. Schoenberg, Atomic and Molecular Spectroscopy: Basic Aspects and Practical Applications, Fourth Edition, Springer (India) Private limited, New Delhi. 2017.
- 4. Baldevraj, V.Rajendran and P.Palanichamy, Science and Technology of Ultrasonics, Second reprint, Narosa Publications, New Delhi., 2009.

UNIT	BOOK	SECTION NO.
т	1	2.3, 2.4, 4.1, 4.2, 4.2.1, 4.3, 4.3.1, 4.3.3, 4.3.7, 4.5, 4.5.1, 4.6, 10.10, 10.10.8
1	2	3.3.1, 3.3.2, 6.3.1
II	1	5.2, 5.5, 5.5.1, 5.8.2–5.8.4, 6.3–6.5, 6.9, 6.14.1, 6.15
III	1	7.2, 6.10.3
111	3	10.5.3, 10.5.4, 10.5.2
IV	4	7.2, 7.3, 7.4, 7.4.1–7.4.5, 7.5, 7.5.1–7.5.2, 7.6, 7.6.1–7.6.2, 7.8, 7.8.1
V	4	10.2, 10.2.1–10.2.4, 10.4, 10.4.2, 10.4.3, 10.4.5, 10.4.7, 10.4.7 (iii), 10.5

Reference Book(s):

1. John R. Cameron and James G.Skofronick, Medical Physics, John Wiley Interscience Publication, Canada.

Web Resource(s):

- 1. https://www.digimat.in/nptel/courses/video/108105091/L03.html
- $2.\ https://en.wikipedia.org/wiki/Anaesthetic_machine$
- 3. https://digimat.in/nptel/courses/video/103103211/L06.html
- 4. https://www.digimat.in/nptel/courses/video/113106070/L16.html
- 5. https://en.wikipedia.org/wiki/Sonar

	Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	Identify the electrical signals from human body and analyze the recorded bio- Potential signals such as ECG, EMG, MRI and physiological Assist Device	К3					
CO2	Classify different types of the Non-destructive testing, pulse echo method, Salinity, temperature and depth measurements	K4					
CO3	Analyse the concepts of underwater acoustics and physical and chemical properties of liquids	K4					
CO4	Design and demonstrate a newer technology for laser based diagnostic methods and treatment	K4					
CO5	Develop a physiological assist device for monitoring and treatment proposes for society	К6					

Relationship Matrix:

Course Programme Outcomes (POs) Outcomes					Os)	Progra	Mean Score of				
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	2	0	3	2	3	2	3	2	2	2.2
CO2	2	2	2	2	3	3	3	2	2	2	2.3
CO3	2	2	0	2	0	3	2	2	3	3	1.9
CO4	3	2	2	2	1	3	3	2	1	2	2.1
CO5	2	3	1	0	2	2	3	2	3	2	2.0
								Mea	an Overa	all Score	2.10
									Cor	relation	Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and \leq 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. M. Jamal Mohamed Jaffar

Dr. J. Ebenezar

Comeston	Course Code	Course Cotegowy	Hours/	Credits	Marks for Evaluation			
Semester	Course Code	Course Category	Week	Credits	CIA	ESE	Total	
I	23PPH1DE1B	DISCIPLINE SPECIFIC ELECTIVES – I	6	4	25	75	100	
Course Title ADVANCED TOPICS IN PHYSICS								

	SYLLABUS	
Unit	Contents	Hours
I	Quantum Theory of Scattering Scattering: scattering cross section, scattering amplitude-scattering by a central potential: partial wave analysis, asymptotic solution, scattering amplitude, scattering cross section, optical theorem -scattering by an attractive square-well potential—Born approximation —scattering by screened Coulomb potential —*validity of Born approximation*.	18
II	Molecular Orbital Theory MO treatment of hydrogen molecule –hydrogen molecule: Heitler London theory –VB method of hydrogen molecule ion – sp,sp²,sp³hybridizations Thomas-Fermi model of the atom –Hartree equation –*Hartree-Fock equation*	18
III	Non- linear Waves and Solitons Linear dispersive and non-dispersive wave propagation-Non-liner dispersive system- John ScottRussel's water tank experiment- cnoidal and solitary wave solution of Korteweg-de vries (K-dV) equation- Fermi-Pasta Ulam(FPU) numerical experiments and recurrence phenomenon- *numerical experiments of Zabusky and Kruskal – birth of soliton* –one soliton solution of the K-dV equation using the Hirota's method	18
IV	Optical Electronics The electro-optic effect: the electro-optic effect in KDP crystal: longitudinal mode -transverse mode. Acousto- optic effect: Raman-Nath and Bragg'sregimes of diffractions — experimental set up to observe Raman-Nath diffraction — Raman-Nath acousto- optic modulator- Bragg's modulator —*acousto-optic spectrum analyser*	18
V	Astronomical Instruments Optical telescope: main parts –general properties –special purpose telescope: astrograph-schmidt telescope –infrared telescope –solar telescope –photography techniques- standard spectrograph/scanner –characteristics of spectrograph –high resolution spectrograph: Echellespectrograph – *Fabry-Perot etalon*	18

^{*....*} Self Study

Text Book:

1. G.Aruldhas, Molecular Structure and Spectroscopy , Eastern Economy Edition , II Edition , 2018 Unit-I: Section 14.1-14.14

Unit-II: Section 4.3,4.7,4.8,4.10

- 2. G.Aruldhas, Quantum mechanics, Eastern Economy Edition Second edition, 2014 Unit II: Section 13.8,13.10
- 3. M. Lakshmanan and S.Rajasekar Nonlinear dynamics: Integrability, Chaos and Patterns, Unit-III: Section 11.2,11.3,11.6,11.7,12.2,12.4,12.5
- 4. K.Thyagarajan, Optical electronics by AjoyGhatak, Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2010 Unit-IV: Section 11.2,11.3,11.6,11.7,12.2,12.4,12.5
- 5. K.D.Abhyankar, Astrophysics, stars and Galaxies Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2015Unit-V: Section 19.2(a,b,d),19.3(a),19.4(a,b,c)

Reference Books

- 1. B. H. Bransden and Joachain, Quantum Mechanics, Wily Edition (2nd edition) 2008
- 2. AjoyGhatak, K.Thyagarajan, Quantum mechanics and field theory Wily Edition ,2018
- 3. Michel Remosissenet, Waves called solitons, Concepts and experiments
- 4. AjoyGhatak, K.Thyagarajan, Contemporary Optics
- 5. A. Yariv, Optical electronics
- 6. Jayant Vishnu Narlikar, An Introduction to Cosmology

Web Resources:

1.https://www.southampton.ac.uk/assets/centresresearch/documents/compchem/DFT_L6.pdf

2. e-PgPathshala,NME-ICT,paper10-M-15

	Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	explain the basic principles of Kerr and non- Kerr media and their underlying rules in recent research	К2					
CO2	Solve the quantum theory problems for scattering.	К3					
CO3	compare the telescopes used in the astronomy	K4					
CO4	evaluate the ideas needed to produce nonlinear waves like soliton	K5					
CO5	Develop the knowledge and operate the astronomical instruments in our lab	К6					

Relationship Matrix:

Course Outcomes (POs) Outcomes						Programme Specific Outcomes (PSOs)					Mean Score of
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	2	2	2	1	1	2	1	2.0
CO2	2	3	2	3	2	1	2	2	3	2	2.2
CO3	2	2	2	3	3	2	2	3	1	2	2.2
CO4	2	1	2	2	2	2	2	3	2	2	2.0
CO5	2	3	3	2	3	3	2	1	2	1	2.2
Mean Overall Score							2.12				
									Cor	relation	Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and \leq 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. S. ABBAS MANTHIRI Dr. V. KALYANA VALLI

Semester	Course Code	Caura Catagory	Hours/	Credits	Marks for Evaluation			
		Course Category	Week	Credits	CIA	ESE	Total	
II	23PPH2CC5	CORE - V	6	5	25	75	100	

Course Title | ADVANCED MATHEMATICAL PHYSICS

	SYLLABUS	
Unit	Contents	Hours
I	Partial Differential Equations (PDE) Definitions – Method of separation of variables – Solution of one-dimensional wave equation – One dimensional heat conduction equation — General solution of the cylindrical wave equation – Modes of an optical fiber-Transformation and classification of PDEs – *Characteristic coordinates* – Canonical forms of hyperbolic, parabolic and elliptic equations	18
П	$\begin{tabular}{ll} \textbf{Special Functions} \\ \textbf{Legendre differential equation and Legendre functions} - Generating function of Legendre Polynomial - Orthogonal properties of Legendre Polynomials-Recurrence formula for $P_n(x)$ Bessel's differential equation - Recurrence formula for $J_n(x)$- Jacobi series-Hermite differential equation and Hermite Polynomials - Generating function of Hermite Polynomials - Recurrence formula for Hermite Polynomials - *Orthogonal properties of Hermite Polynomials* \\ \end{tabular}$	18
III	The Beta, Gamma, Dirac-Delta, Green's Functions Definition of Beta and Gamma functions – symmetry property of Beta function – transformation of Beta function – *transformation of Gamma function*—relation between Beta and Gamma functions Dirac-Delta function – properties of delta function – three dimensional delta function – Green's function for one-dimensional case – application to boundary value problem –symmetry property of Green's function – Green's function for Poisson's equation	18
IV	Fourier and Laplace Integral Transforms Fourier sine and cosine transforms of derivatives — Fourier transform functions of two and three variables — *finite Fourier transforms* — solution of boundary value problems (BVP). Laplace Integral Transform Evaluation of definite integrals-Solution of differential equations — ordinary differential equation (ODE) with constant coefficients — ODE with variable coefficients — solution of integral equations — solution of boundary value problem	18
V	Group Theory Concept of a group - *Abelian group* - the cyclic group - the group multiplication table - Rearrangement theorem - Isomorphism and Homomorphism - the group of symmetry of an equilateral triangle - group of symmetry of a square - representation of groups - reducible and irreducible representations - Schur's Lemma I and II - The orthogonality theorem- The character of a representation	18
VI	Current Trends (For CIA only) Self-Study for Enrichment: Exact differential –Sylvester's theorem— Elementary ideas in Lie Groups and Lie Algebra applications of Fourier Transforms– Laguerre differential equation Hypergeometric functions of Fourier Transforms – Laguerre differential equation.	

..... Self Study

Text Books:

- 1. A.K. Ghatak, Mathematical Physics, IC Goyal& S.J. Chua, Mac Millan India Ltd., 1995. Unit I: 15.2, 15.3, 15.6, 15.5, 15.6, 15.7
- 2. Satya Prakash, Mathematical Physics, Sultan Chand and Sons, 7^{th} edition, New Delhi (2005). Unit – II :7.12-7.16,7.22,7.26,7.28,7.35-7.38

Unit -III :4.1-4.7, 5.2-5.5, 11.1,11.2,11.8-11.12

Unit – IV:10.5-10.8,10.22

Unit - V: 13.1-13.2,13.4-13.6,13.13,13.16-13.22

Reference Books

- 1. Charlie Harper, Introduction to Mathematical Physics, PHI,New Delhi,2006.
- 2. P.K. Chattopadhyay, Mathematical Physics, New Age International, New Delhi, 1990
- 3. Dass, H.K., & Rama Verma., (2018). Mathematical Physics. (1st Edition) S. Chand& Co, New Delhi.

Web Resources

- $1.\ 1.\ https://free videolectures.com/course/3536/selected-topics-in-mathematical-physics$
- $2. \ https://www.perimeterinstitute.ca/video-library/collection/11/12-psi-mathematical-physics$
- 3. http://mediacore.ictp.it/media/mathematical-methods-lecture-1-of-34

Online Course Reference

Unit V:https://swayam.gov.in/nd1_noc20_ph03/preview

	Course Outcomes							
Upon suc	cessful completion of this course, the student will be able to:							
CO No.	CO Statement	Cognitive Level (K-Level)						
CO1	Remember and Understand the various mathematical concepts used in physics	K2						
CO2	Analyze mathematical tools like vector, matrix, group theory, complex integration, Fourier and Laplace series, special function will prepare the student to solve ODE; PDE's which model physical phenomena.	К3						
CO3	Evaluate the vector, linear, simultaneous and differential equations which will be necessary to pursue other areas in physics.	K4						
CO4	Apply mathematical methods to predict the problems in classical physics, statistical physics and quantum mechanics as well as electrodynamics.	K5						
CO5	Solve the physical problems using mathematical techniques.	К6						

Relationship Matrix:

Course Outcomes	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean Score of	
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs	
CO1	3	2	3	2	1	3	2	2	2	3	2.3	
CO2	2	3	2	3	3	3	3	2	2	3	2.6	
CO3	2	2	3	1	2	2	3	2	3	2	2.2	
CO4	2	1	2	3	3	2	3	2	3	3	2.4	
CO5	2	3	2	3	2	2	3	2	3	2	2.4	
Mean Overall Score										2.38		
	Correlation										Medium	

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and $<$ 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. R.RAJ MUHAMED Dr. S. SHEK DHAVUD

Semester	Course Code	Course Cotogowy	Hours/	Credits	Marks for Evaluation			
		Course Category	Week	Credits	CIA	ESE	Total	
II	23PPH2CC6	CORE - VI	6	5	25	75	100	

Course Title | MOLECULAR SPECTROSCOPY

	SYLLABUS	
Unit	Contents	Hours
I	Rotation of Molecules Classification of Molecules – Rotational spectra of rigid diatomic molecules – Isotope effect in rotational spectra – non-rigid rotator – linear polyatomic molecules –symmetric top molecules – asymmetric top molecules – *Stark Effect* – Microwave Spectrometer – Instrumentation	18
п	Infrared Spectroscopy Vibrational energy of a diatomic molecule – Infrared selection rules – Vibrating diatomic molecule – Diatomic vibrating rotator – vibrations of polyatomic molecules – normal vibrations of CO ₂ and H ₂ O molecules –rotation – vibration–spectra of polyatomic molecules – linear molecules – * symmetric top molecules* – FTIR Instrumentation	18
III	Raman Spectroscopy Theory of Raman scattering – classical theory – Quantum theory – rotational Raman spectra: linear molecules – symmetric top molecule – asymmetric top molecule – Vibrational Raman Spectra – *mutual exclusion principle* – Raman spectrometer – Fourier transform Raman spectrometer – structure determination using IR and Raman Spectroscopy – Molecules of XX2, XX3 –Coherent-antistokes Raman scattering – Photo acoustic Raman Scattering	18
IV	Electronic Spectra of Diatomic molecules & ESR Vibrational course structure – Vibrational analysis of band systems – Deslanders table – Frank-Condon principle – Rotational fine structure of electronic – Vibration Spectra – Dissociation – Election Spin Resonance – Principle – ESR spectrometer – Total Hamiltonian – * Hyperfine structure *	18
V	Resonance Spectroscopy Magnetic properties of nuclei – Resonance condition – NMR instrumentation – Relaxation process – Bloch equations – chemical shift – High Resolution Hamiltonian NMR Imaging – The quadruple nucleus – principle of NQR – Transition for nonaxially symmetric systems – * NQR Instrumentation chemical bonding*	18
VI	Current Trends (For CIA only) – Photoacoustic spectroscopy-PAS spectra-ATR Spectroscopy	

^{*....*} Self Study

Text Book:

$\hbox{G. Aruldhas, Molecular structure and Spectroscopy, Eastern Economy Edition , II Edition , 2009. \\$

Unit – I: Chapter- VI: 6.1, 6.3, 6.4, 6.6, 6.8 – 6.11, 6.14

Unit - II: Chapter-VII: 7.1 - 7.18

Unit- III: Chapter-VIII & XV: 8.1 - 8.17, 15.8, 15.9

Unit-IV:Chapter-IX&~XI:9.1-9.3,~9.6,~9.7,~9.9,~11.1-11.5

Unit – V:Chpater-XII: 12.1, 12.2, 12.4, 12.5, 12.7

Colin N. Banwell

Reference Books

- 1. Colin N. Banwell and Elaine M. McCash, Fundamentals of Molecular Spectroscopy, Fourth Edition, Tata McGraw-Hill Publishing Company Ltd, New Delhi, 2010.
- 2.Gurdeep R. Chatwal, Sham K. Anand, Spectroscopy- Atomic and Molecular, Himalaya PublishingHouse, Delhi, 2004.
- 3. H. Kaur, Spectroscopy, Pragati Publications, 9th Edition,2014v

Web Resources:

- 1.https://www.southampton.ac.uk/assets/centresresearch/documents/compchem/DFT_L6.pdf
- 2. e-PgPathshala,NME-ICT,paper10-M-15
- 3. JLExp13.pdf (mit.edu) 2. https://nptel.ac.in/courses/115101003

	Course Outcomes	
Upon suc	cessful completion of this course, the student will be able to:	
CO No.	CO Statement	Cognitive Level (K-Level)
CO1	Recall the fundamental concepts and applications of microwave, IR, Raman and other spectroscopic methods, explain the basic, principle and underlying quantum concepts of spectroscopy	K2
CO2	Make use of electronic spectroscopy for chemical analysis. Analyze the NMR and FTIR spectra of various samples and identify their chemical structure.	К3
CO3	Analyze the NMR and FTIR spectra of various samples and identify their chemical structure, understand the spectroscopic applications in allied fields	K4
CO4	Choose suitable spectroscopic technique and examine the chemical composition of a material. familiarize to differentiate various types of spectra	K5
CO5	Develop the knowledge acquired and use spectroscopic instruments to examine and develop new materials. motivate towards research in spectroscopy	K6

Relationship Matrix:

Course	Programme Outcomes (POs)					Progra	Mean Score of				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	2	2	2	1	2	2	2	2.2
CO2	2	3	2	3	2	2	2	2	3	2	2.3
CO3	2	2	2	3	3	2	3	3	2	2	2.4
CO4	2	1	2	2	2	2	2	3	2	2	2.0
CO5	2	3	3	2	3	3	2	1	2	2	2.3
Mean Overall Score										2.22	
Correlation										Medium	

Mean Overall Score	Correlation
< 1.5	Low
$\geq 1.5 \text{ and } \leq 2.5$	Medium
≥ 2.5	High

Course Coordinators:

Dr. A. ABBAS MANTHIRI Dr. S. ABBAS MANTHIRI

Semester	Course Code	Course Category	Hours/	Credits	Marks for Evaluation			
	Course Code	Course Category	Week	Credits	CIA	ESE	Total	
II	23PPH2CC7	CORE - VII	6	5	25	75	100	

Course Title | ELECTROMAGNETIC THEORY

	SYLLABUS	
Unit	Contents	Hours
I	UNIT – I: ELECTROSTATICS AND BOUNDARY VALUE PROBLEM Gauss law and its applications: field due to infinite, straight uniformly charged wire – Poisson and Laplace equations – Multipole expansion – Method of separation of variables: Cartesian coordinates – Potential at point between the plates of a parallel plate capacitor – Spherical coordinates – Potential at point between the plates of a spherical capacitor - Method of images: Classic image problem – *Boundary value problems with linear dielectrics*.	18
п	UNIT – II: MAGNETOSTATICS Lorentz force law – Biot-Savart's law and its applications: Magnetic field due to the current flowing in a straight wire – Ampere's circuital law and its applications: Field inside a long Solenoid – *Divergence and curl of magnetic induction* – Magnetic scalar potential – Magnetic vector potential – #Magnetic dipole moment# – Magnetization – Magnetic intensity – Magnetic susceptibility and permeability – Boundary conditions for B and H between two media.	18
III	UNIT – III: FIELD EQUATIONS AND THEIR POTENTIALS Maxwell's equation – Equation of continuity – Displacement current – Poynting theorem – Poynting vector – electromagnetic potentials - Gauge transformation: Lorentz and coulomb gauges – #Retarded potentials# – Lineard Wiechert potentials – Fields at a point charge in uniform rectilinear motion	18
IV	UNIT – IV: ELECTROMAGNETIC WAVE PROPAGATION Propagation of Electromagnetic waves: free space, non-conducting medium (isotropic dielectric), conducting medium – *Reflection and refraction of electromagnetic waves* - Kinematic and dynamic properties – Fresnel's equation – Wave guides – TE and TM modes in rectangular wave guides	18
V	UNIT – V: RADIATION AND PLASMA PHYSICS Electric dipole radiation – Magnetic dipole radiation – Radiation from an arbitrary source – Power radiated by a point charge: Larmor formula – Radiation reaction: Abraham-Lorentz formula. Basics of plasma – Composition and characteristics of plasma – Pinch effect – *Maxwell's equations in a homogeneous plasma* – Dispersion relation in plasma medium: Phase and group velocity.	18

.... Self Study

Text Book(s):

- 1. K.K. Chopra and G.C. Agarwal, Electromagnetic Theory, Sixth edition, K. Nath& Co., Meerut. 2019–2020.
- 2. David. J. Griffith, Introduction to Electrodynamics, Third edition, Prentice Hall of India. 2009.
- 3. Satya Prakash, Electromagnetic theory and Electro dynamics, Eleventh edition, KedarNath Ram Nath, Meerut. 2014.
- 4. B.B. Laud, Electrodynamics, Second edition, Wiley Eastern Limited, Second Reprint, September 1990.
- 5. S. N. Goswami, Elements of Plasma Physics, New Central Book Agency (P) Ltd., Calcutta, 2016.
- 6. Edward C. Jordan and Keith G. Balmain

UNIT	BOOK	SECTION NO.
	1	1.3, Ex 3 a, 1.4, 2.2 a, 2.2 b, 2.3 a, 2.3 b
I	2	2.3.3, 3.4, 3.2.1, 4.4.2
	4	1.6, 3.1, 3.10
	1	3.2 a, 3.2 b, 3.2 c, 3.3, 3.3 b, 3.5, 3.6, 3.8, 3.9, 3.10 a, 3.10 b, 3.11
п	3	6.2, 6.3, 6.6, 6.8, 6.9, 6.10, 6.11, 6.12, 6.14, 6.16, 6.17, 6.21, 6.22, 6.30
11	2	5.1, 5.2, 5.3, 6.1.4, 6.4.1, 6.1.1
	4	4.7, 4.9 a, 4.9 b, 4.15, 4.17, 5.7, 4.18
	1	4.3, 4.1, 4.2, 4.5, 4.7, 4.9, 4.10, 4.11, 8.1, 8.2,8.3
III	3	8.5, 8.2, 8.3, 8.9, 8.10, 11.3, 11.4, 9.12, 9.13, 9.14, 9.15
1111	2	10.1.2, 10.1.3, 10.2.1
	4	9.1, 8.5
IV	1	5.1, 5.2, 5.4, 6.2, 6.3, 6.8,6.9
1 V	3	8.12, 8.14, 8.15, 9.2, 9.4, 9.7, 9.8
V	2	11.1.1, 11.1.2, 11.1.3, 11.1.4, 11.2.1, 11.2.2
V	5	1.1, 1.2, 3.7, 3.8.2, 3.8.3

Reference Book(s):

- 1. J.D. Jackson, Classical Electrodynamics, Third edition, John-Wiley, New York.
- 2. P. Lorrain and D. Corson, Electromagnetic fields and Waves, Second edition, CBS Publishers and Distributers, New Delhi.
- 3. Edward C. Jordan and Keith G. Balmain, Electromagnetic waves and Radiating system, Second edition, Prentice Hall of India, New Delhi.

Web Resource(s):

- 1. https://farside.ph.utexas.edu/teaching/jk1/Electromagnetism/node42.html
- 2. https://digimat.in/nptel/courses/video/115104088/L35.html
- 3. https://digimat.in/nptel/courses/video/115106122/L71.html
- 4. https://www.youtube.com/watch?v=SvoUmF_CjnY
- 5. https://en.wikipedia.org/wiki/Fresnel_equations
- 6. https://www.digimat.in/nptel/courses/video/115102020/L07.html

	Course Outcomes							
Upon suc	Upon successful completion of this course, the student will be able to:							
CO No.	CO Statement	Cognitive Level (K-Level)						
CO1	Apply the basic concepts of electrostatics, magnetostatics, and field equations	К3						
CO2	Classify the method of different transformations, TE and TM modes in circular and rectangular wave guides	K4						
CO3	Analyze the Magnetic dipole radiation relation and electromagnetic wave propagation in plasma medium	K4						
CO4	Determine the boundary conditions in electrostatics and magneto statics and Poynting theorem.	K5						
CO5	Adapt and solve classic image problem, electromagnetic waves in different medium, Larmor formula, Abraham-Lorentz formula and Dispersion relation in plasma	K 6						

Relationship Matrix:

Course Outcomes (POs) Outcomes							Programme Specific Outcomes (PSOs)					
(COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs	
CO1	2	2	0	3	2	2	2	3	2	2	2.2	
CO2	2	1	2	2	2	3	2	2	2	1	2.3	
CO3	1	2	0	1	0	2	3	3	1	1	1.8	
CO4	3	2	0	0	0	3	3	1	0	2	2.0	
CO5	2	3	0	0	0	1	2	2	3	2	1.8	
								Mea	an Overa	all Score	2.02	
									Cor	relation	Medium	

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and \leq 2.5	Medium
≥ 2.5	High

Course Coordinators: Dr. Peer Mohamed Sadhik

Dr. J. Ebenezar

Semester	Course Code	Course Cotegowy	Hours/ Credits		Marks for Evaluation						
Semester	Course Code	Course Category	Week	Credits	CIA	ESE	Total				
II	23PPH2CC8P1	CORE – VIII	3	2	10	40	50				
~											

Course Title | CONDENSED MATTER PHYSICS – PRACTICAL

List of Experiments:

- 1. Determination of Rydberg's constant using Hydrogen arc lamp.
- 2. Determination of wavelength and refractive index using Bi-prism & Spectrometer.
- 3. Determination of Planck's constant.
- 4. Hysteresis Loop Tracer.
- 5. Band gap energy Four Probe method.
- 6. Determination of carrier concentration and Hall coefficients in semiconductors.
- 7. e/m Helical method.
- 8. Determination of magnetic susceptibility of anhydrous sample Guoy's method.

Text Books:

- 1.M.N. Srinivasan, S. Balasubramaniyan, R. Ranganathan, A text book of Practical Physics,
 - S. Chand&Sons, Reprint 2010.
- 2.C.C. Ouseph, U.J. Rao& V. Vijayendran, Practical physics and electronics,
 - S. Viswanathan, Pvt, Ltd, First Edition, 2007.

Web References:

www.physicstutoruials.org www.sciencelearn.org.nz

	Course Outcomes								
Upon successful completion of this course, the student will be able to:									
CO No.	CO Statement	Cognitive Level (K-Level)							
CO1	Recall the basic principles of Solid State Physics	K2							
CO2	Make practical skills essential for experimentation.	К3							
CO3	Analyze initial adjustments of CRO, sensitive balance etc.	K4							
CO4	evaluate the experimental skills	K5							
CO5	Create the ideas required and methods of the skills developed to future problems.	K6							

Relationship Matrix:

Course	Pro	gramm	e Outco	omes (P	Os)	Progra	Mean				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs
CO1	3	3	3	2	2	2	2	2	2	2	2.3
CO2	2	3	2	3	2	2	2	2	3	2	2.3
CO3	2	2	2	3	3	2	3	3	2	2	2.4
CO4	2	2	2	2	2	2	1	3	3	3	2.2
CO5	2	3	3	2	3	3	2	1	2	2	2.3
		•			•	•	•	Me	an Overa	all Score	2.34
									Cor	relation	Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and $<$ 2.5	Medium
≥ 2.5	High

Course Coordinator: Mr. Umar Malik

Compaton	Course Code	Course Cotegory	Hours/	Credits	Marks for Evaluation			
Semester	Course Code	Course Category	Week	Creatis	CIA	ESE	Total	
II	23PPH2CC8P2	PH2CC8P2 CORE – VIII		2	10	40	50	
Course Title ANALOG ELECTRONICS – PRACTICAL								

List of Experiments:

- 1. IC Regulated dual power supply using IC (7812, 7912) and Op Amp characteristics.
- 2. Astable Multivibrator using 555 timer.
- 3. Characteristics of LDR.
- 4. Wien's Bridge Oscillator using Op- Amp.
- 5. Characteristics of UJT and UJT Relaxation Oscillator.
- 6. D/A converter –R 2R Ladder Method.
- 7. Monostable Multivibrator using 555 timer.
- 8. Low Pass and High Pass Filters.

Books for Reference:

- 1.M.N. Srinivasan, S. Balasubramaniyan, R. Ranganathan, A text book of Practical Physics, S.Chand&Sons, Reprint 2010.
- 2.C.C. Ouseph, U.J. Rao& V. Vijayendran, Practical physics and electronics,
 - S. Viswanathan, Pvt,Ltd, First Edition, 2007.

Web References:

www.physicstutoruials.org www.sciencelearn.org.nz

CO No.	CO Statement	Cognitive Level (K-Level)
CO1	Recall the basic principles of Analog Electronics	K2
CO2	Make practical skills of components and their tolerances.	К3
CO3	Analyze initial adjustments of CRO, ammeters, voltmeters, sensitive balance etc.	K4
CO4	evaluate the troubleshoot deficiencies and rectify problems that may occur	K5
CO5	Create the ideas to design electronic circuits to device new experiments.	К6

Relationship Matrix:

Course	Course Programme Outcomes (POs)						Programme Specific Outcomes (PSOs)					
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs	
CO1	3	3	3	2	2	2	2	2	2	2	2.3	
CO2	2	3	2	3	2	2	2	2	3	2	2.3	
CO3	2	2	2	3	3	2	3	3	2	2	2.4	
CO4	2	2	2	2	2	2	1	3	3	3	2.2	
CO5	2	3	3	2	3	3	2	1	2	2	2.3	
								Mea	an Overa	all Score	2.34	
									Cor	relation	Medium	

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and $<$ 2.5	Medium
≥ 2.5	High

Course Coordinator: Dr. A. Mohamed Saleem

Semester	Course Code	Course Cotegory	Hours/	Credits	Marks for Evaluation				
Semester	Course Coue	Course Category	Week	Creans	CIA	ESE	Total		
II	23PPH2DE2A	Discipline Specific Electives - II	6	4	25	75	100		

Course Title | COMPUTATIONS IN PHYSICS USING PYTHON

	SYLLABUS					
Unit	Contents	Hours				
I	The Python Ecosystem					
	Python Basics -variables and strings - lists - nested lists - tuples - sets -					
	dictionaries - conditionals (if - else, if - elif - else) - Loops (while loops - for	10				
1	loops)—comprehensions —The Python Ecosystem — Python Packages: Matplotlib —	18				
	NumPy - SciPy - SymPy - VPython - Python Visualization Tools -Python					
	Matrix Tools – *Python Algebraic Tools*					
	Computational Basics of Physics					
	Floating Point Arithmetic – Uncertainties in Computed Numbers-Numerical					
II	Derivatives-Numerical Integration-Gaussian Quadrature – *Random Number					
	Generation* -Test for Random Generators - Ordinary Differential Equations -					
	Euler and Runge-Kutta Rules – Partial Differential Equations					
	Data Analytics for Physics					
III	Functions – scope – recursion – Lambdas – *File Operations* – Read/Write data					
111	to file -Curve Plotting - Root Finding - Least Squares Fitting - Linear Least					
	Squares Fitting – Discrete Fourier Transforms – Fast Fourier Transforms					
	Problems in Classical Dynamics, Electricity and Magnetism					
	Oscillators – Linear and Nonlinear Oscillators – Assessing precision via Energy					
IV	Conservation – Models of Friction-linear and Nonlinear Resonances –Realistic	18				
1 1	Pendulum –Elliptic Integrals Double Pendula –Period Algorithm – Phase Space	10				
	Orbits -*Projectile Motion* - Bound States -Scattering -Rutherford Scattering -					
	Stable Points in Electric Fields – AC circuits – LCR circuit					
	Problems in Quantum Mechanics and Statistical Physics					
	Bound states for 1-D box (Semi-analytic) – Arbitrary Potential- Klein-Gordon					
\mathbf{v}	Equation- Harmonic Oscillator Wave Functions - Hydrogen Atom Wave					
,	Functions – Scattering –*Spontaneous Decay* – Fitting a Black Body Spectrum –					
	Heat Equation – Solution for various geometries-Random Walks-Brownian					
	Motion Motion					

..... Self Study

Text Books:

- 1. Anthony Scopatz and Kathryn D. Huff, Effective Computation in Physics, O'Reilly Media, Inc., CA. USA, (2015)
- 2. Rubin H. Landau and Manuel Jose Paez, Computational Problems for Physics-With Guided Solutions Using Python, CRC Press, Taylor & Francis Group, Florida, (2018).

Unit -I : Textbook 1., Chapters 2.0, 3.0, 4.0

Textbook 2., Section 1.2

Unit- II : Textbook 2., Sections 1.3, 1.4, 1.5, 1.6, 1.7, 1.8

Unit-III : Textbook 1. Chapter 5.0

Textbook 2. Sections2.2, 2.3, 2.4, 2.4, 2.5, 3.4, 3.5

Unit-IV : Textbook 2. Sections 3.2, 3.3, 3.6, 3.7, 3.9, 9.4, 9.10 Unit-V : Textbook 2. Sections 6.2, 6.3, 6.4, 6.6, 6.8, 7.2, 7.3

Reference Book

Hans PetterLangtangen, A Primer on Scientific Programming with Python, 5th Edition, Springer-Verlag Berlin Heidelberg, (2016)

Web Resource:

http://physics.oregonstate.edu/~landaur/Books/CPbook/eBook/Lectures/

	Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	acquire the basic knowledge of the constructs of Python language and the skill to write simple and efficient codes in it.	К3					
CO2	learn the computational needs such as floating-point arithmetic, numerical methods for integration, differentiation, random number generation etc.	К3					
CO3	Analyze the numerical and graphical results to explain the dynamical behaviours in the light of the laws of Physics	K4					
CO4	Explain the mathematically model the physical systems in terms of equations and derive the solutions numerically	K5					
CO5	Develop the numerical solutions using Python graphics packages	К6					

Relationship Matrix:

Course	Programme Outcomes (POs)					Progra	Mean Score of				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	2	2	2	1	2	2	2	2.2
CO2	2	3	2	3	2	2	2	2	3	2	2.3
CO3	2	2	2	3	3	2	3	3	2	2	2.4
CO4	2	1	2	2	2	2	2	3	2	2	2.0
CO5	2	3	3	2	3	3	2	1	2	2	2.3
Mean Overall Score										2.22	
Correlation										Medium	

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and $<$ 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. A. IshaqAhamed Mr. J. Umar Malik

Semester	Course Code	Common Cotogomy	Hours/	Credits	Marks for Evaluation			
		Course Category	Week	Credits	CIA	ESE	Total	
II	23PPH2DE2B	Discipline Specific Electives - II	6	4	25	75	100	

Course Title NANOSCIENCE AND TECHNOLOGY

	SYLLABUS	
Unit	Contents	Hours
I	Nanomaterials *Introduction to materials – solid materials and their strength – perspective of length* – nanoscience and nanotechnology – nanostructures in nature – quantum structures – quantum confinement - surface effect of nanomaterials – prime materials – *carbon nanostructures* – oxides: zinc oxide – aluminium oxide – copper oxide	18
II	Growth techniques of Nanomaterials Nano materials synthesis –physical approaches: arc discharge method – laser ablation – high energy ball milling – chemical vapour deposition (CVD) – * plasma synthesis method – electro deposition* chemical approaches: hydrothermal synthesis – Sol–gel synthesis – microwave method – co–precipitation method	18
III	Properties of Nanomaterials Mechanical properties of nanomaterials – optical properties ofnanomaterials – applications of optical properties of nanomaterials – electrical properties – dielectric materials and properties – magnetic properties of materials – supermagnetism – electrochemical process – *chemical sensing properties*	18
IV	Characterization of Nanomaterials X – ray diffraction – the powder method: determination of grain size using X – rays - line broadening studies – electron microscopy – principles of electron microscopy – Scanning electron Microscope (SEM) – energy dispersive X–ray analysis (EDX) – Transmission electron microscope (TEM) – spectroscopy techniques: absorption spectroscopy – *photoluminescence* – Fourier Transform infrared spectroscopy – Raman spectroscopy	18
V *	Applications of Nanomaterials Nanomaterials in medicine – energy sector –*nanomaterials in next generation computer technology* - communication sector –food –fabric industries – automobiles –ceramic industries * Solf Study	18

..... Self Study

Text Books:

M.A. Shah TokeerAhmad ,Principles of Nano Science and Nanotechnology, Narosa

Unit-I : Section 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 1.10, 1.11

Unit-II: Section2.2, 2.3, 2.4

Unit-III: Section 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8

Unit-IV: Section4.3, 4.6, 3.3, 3.5, 3.6, 5.5, 5.6, 5.7, 5.8

Unit-V: Section7.2, 7.3, 7.8, 7.9, 7.11, 7.12

Reference Books

- 1. K.K. Chattobpadhyay, Introduction to Nano Science and Technology, PHI, New Delhi.
- 2. S. Shanmugam, Nano Technology MJP Publishers

Web Resource:

- 1. http://www.trynano.org/
- 2. https://www.nanowerk.com/111
- 3. https://www.nanotec.org.uk/report/chapter2.pdf

	Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	Acquired the basic principles and fundamental concepts of nanotechnology	К3					
CO2	learn the theablity to evaluate nanostructures in quantum mechanical approaches computational needs such as floating-point arithmetic, numerical methods for integration, differentiation, random number generation etc.	К3					
CO3	Analyze the importance of nanotechnology in various fields	K4					
CO4	Explain the the capacity to convey their views on the implication of nano sciences for the society	K5					
CO5	Develop towards research in Nanotechnology	K6					

Relationship Matrix:

Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean Score of
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs
CO1	3	3	3	2	2	2	1	2	2	2	2.2
CO2	2	3	2	3	2	2	2	2	3	2	2.3
CO3	2	2	2	3	3	2	3	3	2	2	2.4
CO4	2	1	2	2	2	2	2	3	2	2	2.0
CO5	2	3	3	2	3	3	2	1	2	2	2.3
Mean Overall Score										2.22	
Correlation										Medium	

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and $<$ 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. A. S. Haja Hameed Mrs. G. Pragadeeswari

Semester	Cauras Cada	Course Category	Hours/	Credits	Marks for Evaluation			
	Course Code	Course Category	Week	Creans	CIA	ESE	Total	
III	23PPH3CC9	CORE - IX	6	6	25	75	100	
Course Ti	tle	NUCLEAR AND	PARTIC	LE PHYS	ICS			

	SYLLABUS	
Unit	Contents	Hours
I	Unit – I: General properties of Atomic Nucleus Binding energy – Stability Curve - semi empirical mass formula – optical model – shell model: evidence for the existence of magic numbers – extreme single particle model – spin orbit potential. Nuclear Forces: *Exchange forces* – Yukawa potential – ground state and excited state of deuteron – low energy n-p scattering - scattering length – phase shift – effective range theory	18
II	Unit – II: Radioactive Decays Alpha decay – Gamow's theory of Alpha decay – Geiger-Nuttal law – neutrino hypothesis – Fermi's theory of beta decay – selection rules – *induced radio activity* –Wu's experiment – non conservation of parity in beta decay – parity in β – decay – gamma decay – selection rules – internal conversion – nuclear isomerism – Multiple order gamma radiations	18
Ш	Unit – III: Nuclear Fission and Fusion *Types of Fission* – distribution of Fission products – Nuclear chain reactions – Q-equation - Four factor formula – Bohr-Wheeler's theory of nuclear fission – liquid drop model. Nuclear Fusion – Thermo nuclear reactions as source of stellar energy – controlled thermo nuclear reactions – Plasma confinement – Fusion reaction in the plasma – conditions for maintained fusion reactions	18
IV	Unit – IV: Nuclear reaction Nuclear Transmutation by alpha , protons and neutron - neutron spectroscopy – Nuclear reaction cross sections – theory of compound nucleus – reciprocity theorem – Direct reactions – Stripping and pick up reactions – Partial wave analysis of nuclear reaction cross sections – level width – Breit-Wigner dispersion formula for $l = 0$ neutrons.	18
V	Unit – V: Elementary particles Classification of elementary particle - fundamental interactions – conservation laws and their validity – the C-P-T theorem – symmetry schemes of elementary particles – SU(2) multiplets – SU(3) multiplets of Hadrons – Gellmann – Okubo mass formula for (1/2) octect baryons – (3/2) decouplet – Gellmann-Nishijima formula – Quarks – *classification and fundamental properties* – Flavours and colours.	18

^{*....*} Self Study

1. Nuclear Physics – D.C. Tayal, Himalaya Publishing House – New Delhi

Unit – I: Chapter-I: 1.6, 1.7, 8.3, 8.4, 8.9-A, 9.4, 9.4- 10.21

Unit – II: Chapter-V: 5.4, 5.5, 5.7, 6.3, 6.5, 6.6, 6.9, 7.4, 7.6

Unit- III: Chapter-XIII: 13.1A, 13.2

Unit – IV: Chapter-X: 10.4, 10.7, 10.9, 10.12, 10.14, 10.20, 10.24

Unit – V: Chpater-XVIII: 18.1-18.4

Reference Book(s):

- 1. Nuclear Physics R.R.Roy and B.P.Nigam, New Age Publishers.
- 2. Nuclear Physics R.C. Sharma, KedarNath Ram Nath, New Delhi.
- $3. \quad Nuclear \ and \ particle \ Physics S.L. Kakani, \ Shubhra Kakani, \ Viva \ books, \ First \ Pub, \ 2008.$
- 4. Elements of nuclear Physics M.L. Pandya, R.P.S. Yadav , KedarNath Ram Nath, New Delhi.
- 5. Nuclear Physics & Particle Physics SatyaPrakash, Sultan Chand & Sons, New Delhi

Web Resource(s):

- 1. https://swayam.gov.in/nd1_noc20_ph19/preview
- 2. https://ocw.mit.edu/courses/22-02-introduction-to-applied-nuclear-physics-spring-2012/d0d046f78c917f107d925f11ac862ae4_MIT22_02S12_lec_ch1.pdf
- 3. https://archive.nptel.ac.in/courses/115/104/115104043/

	Course Outcomes									
Upon suc	Upon successful completion of this course, the student will be able to:									
CO No.	CO No. CO Statement									
CO1	acquire essential knowledge on nuclear models and related theories.	K1								
CO2	can understand and apply the conservation laws for any nuclear reaction	K2								
CO3	shall be able to apply the nuclear theory to expound their radioactive decays	К3								
CO4	analyse the nuclear fission and fusion related problems	K4								
CO5	solve the reaction mechanism of elementary particles	K5								

Relationship Matrix:

Course	Programme Outcomes (POs)						Programme Specific Outcomes (PSOs)					
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs	
CO1	2	3	3	2	2	3	3	3	2	2	2.5	
CO2	3	3	3	2	2	3	2	1	1	2	2.2	
CO3	3	3	3	1	3	2	2	2	2	3	2.4	
CO4	3	3	2	3	2	3	3	3	1	3	2.6	
CO5	2	3	2	2	2	2	3	3	2	2	2.3	
Mean Overall Score												
	Correlation											

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. N. Peer Mohamed Sathik

Dr. C. Hariharan

Semester	Course Code		Course Category	Hours/ Credits		Marks for Evaluation			
			Course Category	Week	Credits	CIA	ESE	Total	
III	23PPH3CC	PPH3CC10 Core – X 6 5		25	75	100			
Course Ti	tle		QUANTUM	1 MECH	ANICS				

	SYLLABUS	
Unit	Contents	Hours
I	Concepts and Formalism of Quantum Mechanics Time dependent Schrödinger equation- Physical Interpretation of Wave function ψ: Normalization and Probability Interpretation -Conservation of Probability: Equation of Continuity Expectation Values: Ehrenfest's Theorem -*Admissibility conditions on wave functions*-Stationary states: Time-independent Schrödinger wave equation.	18
II	Exactly Soluble Eigen Value Problems and Matrix Formulation Commutation relations -Eigen values and Eigen functions of angular momentum operators - One Dimensional Linear Harmonic Oscillator-Reduction of a Two Body Hamiltonian-Hydrogen Atom Hilbert Space-Linear Operators-Eigen Functions and Eigen Values - *Hermitian Operators*—Simultaneous Measurability of Observables-General Uncertainty Relation-Dirac's Notation - Equations of Motions - Schrodinger, Heisenberg and Interaction Representations	18
Ш	Approximation Methods Stationary State Perturbation theory (non-degenerate and degenerate cases)- Application to Stark Effect in the ground state (n=1) and first excited state (n=2) of Hydrogen atom Time Dependent Perturbation Theory: First Order Perturbation—*Harmonic Perturbations*- Transition to Continuum States: Fermi's Golden Rule	18
IV	Angular Momentum and Spin States General angular momentum - *Eigen values of J² and Jz*- Matrix Representation of J+, J-, J _x and J _y - Angular Momentum Matrices - Angular Momentum Matrices Problems Spin angular momentum- spin ½ states -Pauli's spin matrices and their properties- Particle Exchange Operator - Symmetric and Antisymmetric Wave Functions- Construction of wave - Symmetric and Antisymmetric Wave Functions-Pauli's Exclusion Principle -Wave Function for a Particle including spin	18
V	Relativistic Wave Equations Klein-Gordon Equation for free particle- Interpretation of Klein-Gordon's Equation-Dirac's Relativistic Equation for a free particle-Dirac's Matrices-Covariant form of Dirac's Equation-Probability Density. Plane Wave Solutions of the Dirac's Equation- Negative Energy States -Dirac's Equation for a Particle in a Central Potential - *Spin of a Dirac Particle*	18

^{*....*} Self Study

1. P.M. Mathews and K. Venkatesan, A Text Book of Quantum Mechanics, Tata McGraw Hill, New Delhi, Second Edition-2017

2.G. Aruldhas, Quantum Mechanics, Prentice Hall of India, New Delhi, Second Edition, 2009

Reference Book(s):

1. Leonard Issac Schiff & Jayendra N Bandyopadhyay, Quantum Mechanics, McGraw Hill Education (India) Private Limited, New Delhi, Fourth Edition, 2014.

2.John L Powell and Bernd Crasemann, Quantum Mechanics, Dover Publications Inc., 2015

Web Resource(s):

NPTEL Course in Physics- Quantum Mechanics and Applications- Prof.AjoyGhatak, IIT New Delhi https://nptel.ac.in/courses/115/102/115102023/, by Klein-Gordan and Dirac which lead to the concept of negative energy states.

	Course Outcomes								
Upon suc	Upon successful completion of this course, the student will be able to:								
CO No.	CO No. CO Statement								
CO1	Conceptualize the abstract nature of the wave function and its interpretation in a statistical sense, the admissibility conditions that the wave function should obey and realize the importance of conservation laws and equation of continuity in quantum dynamics	K1							
CO2	Reason out the equivalence between the classical concepts and quantum ideas under suitable restraining conditions	K2							
CO3	Apply the theory of Wave Mechanics to understand simple exactly solvable problems like Linear Harmonic Oscillator, Hydrogen Atom etc., and find how the Matrix Mechanics developed by Heisenberg complements the Wave Mechanics theory developed by Schroedinger	К3							
CO4	Introduce the various approximation methods developed to study higher order systems, interactions of matter with waves and radiations, as well as to understand the concepts of angular momenta and spin and how these lead to the concept of Pauli's exclusion principle	K4							
CO5	Understand the behaviour of physical systems in the relativistic limits using the methodsdeveloped by Klein-Gordan and Dirac which lead to the concept of negative energy states.	К6							

Relationship Matrix:

Course]	Programi	ne Outco	mes (POs	Programme Specific Outcomes (PSOs)					Mean Score of		
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	COs	
CO1	2	3	3	2	2	3	2	3	2	3	2.5	
CO2	3	3	2	2	2	3	2	3	2	2	2.4	
CO3	3	2	3	2	3	3	2	3	2	3	2.6	
CO4	2	3	2	3	2	3	2	3	2	3	2.5	
CO5	2	3	2	2	2	2	3	3	2	2	2.3	
Mean Overall Score												
	Correlation											

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. A. Ishaq Ahamed

Dr. R. Raj Muhamed

Semester	Course Code	Course Cotogowy	Hours/	Credits	Marks	for Evaluation	
	Course Code	Course Category	Week	Creans	CIA	ESE	Total
III	23PPH3CC11	SPPH3CC11 Core - XI		5	25	75	100
Course Ti	tle	STATISTICA	L MEC	HANICS			

SYLLABUS							
Unit	Contents	Hours					
I	KINETIC THEORY Introduction-distribution function-Equation of motion for distribution function-Boltzmann transport equation-H-theorem and its proof - Maxwell-Boltzmann distribution function - most probable speed- root mean square speed - Equilibrium distribution function for dilute gas - Thermodynamics of dilute gas - Mean free path - Effusion.	18					
II	Foundations of statistical mechanics - Specification of states of a system - Micro canonical ensemble - Phase space - Entropy - Connection between statistics and thermodynamics - Entropy of an ideal gas using the micro canonical ensemble - Entropy of mixing and Gibb's paradox.	18					
III	CANONICAL AND GRAND CANONICAL ENSEMBLES Trajectories and density of states - Liouville's theorem — Canonical and grand canonical ensembles - Partition function - Calculation of statistical quantities - Energy and density fluctuations.	18					
IV	CLASSICAL AND QUANTUM STATISTICS Density matrix - Statistics of ensembles - Statistics of indistinguishable particles - Ideal Fermi gas - Degeneracy - Photon gas: radiation pressure-radiation density- Plank radiation formula - Ideal Bose gas - Bose-Einstein condensation	18					
v	ADVANCED QUANTUM STATISTICS Super fluids - Liquid Helium - λ-transition - Tisza's two fluid model - Landau's theory of phase transitions - Pauli's theory of paramagnetism - General formulation of Ising model - *One dimensional Ising model *- Electron gas in metals.	18					

^{*....*} Self Study

- 1. K. Huang, Statistical Mechanics, Taylor and Francis, London, Second Edition. 2002
- 2. Statistical Mechanics, B.K. Agarwal and Melvin Eisner, Newage Publication, Second Edition.
- 3. Statistical Mechanics, Gupta and Kumar, PragathPrakasan Publication, 22nd Edition
- 4. Fundementals of statistical mechanics, B.B.Laud New age international publishers second edition 2012

Reference Book(s):

- 1. R. K. Pathria, 1996, Statistical Mechanics, 2nd edition, Butter WorthHeinemann, New Delhi.
- 2. L. D. Landau and E. M. Lifshitz, 1969, Statistical Physics, PergamonPress, Oxford.
- 3. J. K. Bhattacharjee, 1996, *Statistical Mechanics*: An IntroductoryText, Allied Publication, New Delhi
- 4. W. Greiner, L. Neise and H. Stoecker, *Thermodynamics and StatisticalMechanics*, Springer Verlang, New York.

Web Resource(s):

- 1. https://swayam.gov.in/nd1_noc20_cy28/preview
- 2. http://stxavierstn.edu.in/ict_ppts/phy/anavenus/9.pdf
- 3. https://ps.uci.edu/~cyu/p238C/LectureNotes/IsingModel/IsingModel.pdf

	Course Outcomes								
Upon successful completion of this course, the student will be able to:									
CO No.	CO Statement								
CO1	To examine and elaborate the effect of changes in thermodynamic quantities on the states of matter during phase transition	K5							
CO2	To analyze the macroscopic properties such as pressure, volume, temperature, specific heat, elastic moduli etc. using microscopic properties like intermolecular forces, chemical bonding, atomicity etc. Describe the peculiar behaviour of the entropy by mixing two gases Justify the connection between statistics and thermodynamic quantities	K4							
CO3	Differentiate between canonical and grand canonical ensembles and to interpret the relation between thermodynamical quantities and partition function	K1							
CO4	To recall and apply the different statistical concepts to analyze the behaviour of ideal Fermi gas and ideal Bose gas and also to compare and distinguishbetween the three types of statistics	K4,K5							
CO5	To discuss and examine the thermodynamical behaviour of gases under fluctuation	К3							

Relationship Matrix:

Course	Programme Outcomes (POs)						Programme Specific Outcomes (PSOs)				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs
CO1	3	3	3	1	1	2	3	1	1	3	2.1
CO2	3	3	3	1	1	2	3	1	1	3	2.1
CO3	3	3	3	1	1	2	3	2	1	3	2.2
CO4	3	3	3	1	1	2	3	2	1	3	2.2
CO5	3	3	3	1	1	2	3	1	1	3	2.1
Mean Overall Score											
									Cor	relation	MEDIUM

Mean Overall Score	Correlation			
< 1.5	Low			
\geq 1.5 and < 2.5	Medium			
≥ 2.5	High			

Course Coordinators: Majar. F.S. Muzzamil

Mr. J. Umar Malik

Semester	Con	ourse Code	Course Category	Hours/	Credits	Marks for Evaluation			
	Co		Course Category	Week	Credits	CIA	ESE	Total	
III	23PP	H3CC12P1	CORE – XII	3	2	10	40	50	
Course Ti	tle		DIGITAL ELECTRONICS – PRACTICAL						

S.No.	List of Experiments
1	Verification of De Morgan's theorem and Boolean expressions
2	Adders and Subtractors using basic logic gates.
3	One bit and two bit comparators.
4	Multiplexer (4×1) and Demultiplexer (1 x 4).
5	R-S, J-K & D flip flops.
6	Shift left and shift right shift registers.
7	Counter (0 – 9) using IC 7490 and decoder driver 7447
8	Asynchronous up/down counters using IC 7476.

1. M.N. Srinivasan, S. Balasubramaniyan, R. Ranganathan, A text book of Practical Physics, S.Chand&Sons, Reprint 2010.

Reference Book(s):

1. C.C. Ouseph, U.J. Rao& V. Vijayendran, Practical physics and electronics, S. Viswanathan, Pvt,Ltd, First Edition, 2007.

Web Resource(s):

- 1. www.physicstutoruials.org
- 2. www.sciencelearn.org.nz

	Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	Construct digital circuits using basic logic gates.	K2					
CO2	Minimisation of logic gates using Boolean laws.	К3					
CO3	Construct combinational and sequential logic circuits.	K3					
CO4	Design modulus counter	K4					
CO5	Apply the digital principles to newer problems that they may encounter in future	К5					

Relationship Matrix:

Course]	Programn	ne Outco	mes (POs)	Programme Specific Outcomes (PSOs)				Mean	
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs
CO1	2	3	3	2	3	3	3	3	2	3	2.7
CO2	3	3	3	2	2	3	2	1	1	2	2.2
CO3	3	2	3	2	3	3	2	3	2	3	2.6
CO4	3	3	2	3	2	3	2	3	1	3	2.5
CO5	2	3	2	2	2	2	3	3	2	2	2.3
Mean Overall Score											2.46
Correlation N											Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. J. Ebenezar

Dr. V. Kalyanavalli

Semester	Course Code		Course Category	Hours/	Credits	Marks for Evaluation			
Semester		ourse Code	Course Category	Week	Credits	CIA	ESE	Total	
III	23P	PH3CC12P2 CORE - XII 3		2	10	40	50		
Course Ti	tle	Nu	merical programming in	Physics u	ısing Pyth	on - Pra	ctical		

S.No.	List of Experiments
1	Numerical Integration using Gaussian Quadrature for a function, comparison with its
1	analytical value and determining the error.
	Random Number Generation using Linear Congruential Technique or Power Residue
2	Method and tests for randomness. Prove that the sum of random variables tends towards a
	Gaussian Distribution.
3	Roots of Polynomial Equations: Newton Raphson Algorithm
4	Fourier Analysis of Oscillations
5	Oscillations: Linear and Nonlinear Resonances
6	Identification of slow and fast oscillations of a double pendulum
7	Study of Projectile Motion using Verlet Algorithm
8	Bound State Problem: Motion of a planet in Gravitational Field.
9	Verification of Rutherford's Scattering formula
10	Surface plots of a dipole and quadra-pole

- 1. Rubin H. Landau and Manuel Jose Paez, Computational Problems for Physics with Guided Solutions Using Python, CRC Press, Taylor & Francis Group, USA,(2018).
- 2. Anthony Scopatz and Kathryn D. Huff, Effective Computation in Physics: Field Guide to Research with Python, O'Reilly Media Inc., CA. USA, (2015)

Reference Book(s):

- 1. Jake VanderPlas, Python Data Science Handbook, O'Reilly Media Inc., CA. USA, (2017)
- 2. Paul Deitel and Harvey Deitel, Python for Programmers, Pearson India Education Services Pvt. Ltd. India, (2020)

Web Resource(s):

http://physics.oregonstate.edu/landaur/Books/CPbook/eBook/Lectures

	Course Outcomes					
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	CO Statement	Cognitive Level (K-Level)				
CO1	acquire the basic knowledge of the constructs of Python language and the skill to write simple and efficient codes in it.	K3				
CO2	learn the computational methods such as RK4 algorithm, Fast Fourier Transforms, Random Number generation etc.	K3				
CO3	apply numerical methods so learnt to solve the mathematical models of many physical systems	K4				
CO4	Use graphical results to corelate the theoretical results of many classical and quantum systems	K5				
CO5	To apply the skill so developed to newer physical problems independently	K6				

Relationship Matrix:

Relationship Wattix.											
Course	Programme Outcomes (POs)					Programme Specific Outcomes (PSOs)					Mean
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs
CO1	3	3	3	3	1	3	3	2	2	3	2.6
CO2	3	3	3	1	2	3	3	3	2	1	2.4
CO3	3	3	3	3	3	3	3	3	2	1	2.7
CO4	3	3	3	2	2	3	3	3	3	1	2.7
CO5	3	3	3	3	2	3	3	3	3	2	2.8
Mean Overall Score											2.64
Correlation										High	

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and $<$ 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. A. Ishaq Ahamed

Semester	Course Code	Course Category	Hours/	Credits	Marks for Evaluation		
	Course Code	Course Category	Week	Credits	CIA	ESE	Total
III	23PPH3DE3A	Discipline Specific Elective - III	6	4	25	75	100
Course Ti	tle	MICROPROCESSOR A	AND MIC	ROCONT	rolli	ER	

SYLLABUS						
Unit	Contents	Hours				
I	Che Microprocessor 8086 086 Microprocessor Architecture-General Purpose Registers-Segment Register- Cointer Register-Instruction Pointer-Flag Register-Instruction Queue-ALU- Control Unit-Memory-Program, Data, Stack memories. 086 Signals-Pin Diagram-minimum mode signals-Maximum mode signals- cystem Bus Architecture					
п	Instruction Set and Programming Addressing modes-Instruction Set-Data transfer Instructions-Arithmetic Instruction-Bit Manipulation Instructions-String Instructions- Program Transfer Instruction -Processor Control Instructions Addition, Subtraction, Multiplication and Division of two 16 bit data – Sum of the elements in an array – Largest data in an array – Sorting an array of data in ascending order – Factorial of 8 bit data					
III	I/O Interfacing Programmable Peripheral Interfacing (8255A)-Pin diagram-Block diagram-BSR mode-Input/Output mode. DAC 0800 8-bit digital to Analog Converter-Interfacing of DAC 0800 with 8086-ADC 0808/0809 - Block diagram and Pin diagram - Interfacing ADC 0808 with 8086 using 8255 pins - Keyboard / Display Controller (IC 8279) - Pin diagram - Block diagram					
IV	Intel 8051 Microcontroller Differences between microprocessor and microcontroller – architecture of 8051 – memory organization – pin details of 8051 – special function registers – Timers/Counters – Timer and control registers – Timer modes of operation – counters – serial data I/O – SCON – PCON – Serial data transmission modes – Interrupts in 8051 *Interrupt control*					
V	8051 Assembly Language Instruction set: addressing modes — data transfer, arithmetic, logical, Boolean variable manipulation and program branching groups Programming: *BCD addition* — Average of the given numbers — I/O Port — Timer Mode 1 — Counter *Self Study Portions *	18				
VI	Current Trends (For CIA only) Arduino-Basics and Design					

Unit-I , Unit-II and Unit-III: P.S.Manoharan, Microprocessor and Microcontroller, Charulatha

Publication, Regulation 2013Authors, Title of the Book, Publication, Edition, Year

Unit-I: Chapter 1.2,1.2.1-1.2.12,1.3.1-1.3.3

Unit-II: Chapter 1.4,1.4.1-1.4.11,1.5,1.5.1-1.5.6

Unit-III Chapter 3.1,3.2,3.2.1-3.2.5,3.4,3.5,3.7-3.7.3

Unit - IV, V: P.S. Manoharan, Microprocessor&Microcontroller, Charulatha Publication, 2011.

Unit - IV: Chapter: 4.1 – 4.9 Unit – V: Chapter: 5.2,5.3, 5.3.1,5.3.2, 5.3.3, 5.3.4, 5.3.4, 5.4, 5.5, 5.6.1, 5.7

Reference Book(s):

- 1. Ramesh S.Gaonkar, Microprocessor architecture, Programming and applications with the 8086, Penram International Publishing (India), Fourth edition.
- 2. A.P.Godse D.A. Godse, Microprocessor and Microcontroller, Technical Publication Pune, First edition-2009.
- 3. V.Vijayendran, Fundamentals of Microprocessors-8086 Architecture, Programming & Interfacing, S.Vishvanathan (Printers & Publishers), PVT. LTD

Web Resource(s):

- 1. https://ict.iitk.ac.in/courses/microprocessors-and-microcontrollers/
- 2. https://www.arduino.cc/

	Course Outcomes					
Upon suc	Upon successful completion of this course, the student will be able to:					
CO No.	conitive (K-Lev					
CO1	Learn the hardware and software functions of Intel 8086 microprocessor and 8051 microcontroller	K2				
CO2	Develop the assembly language programming skills	К2				
CO3	Learn the functions of memory and I/O peripherals for interfacing of Intel 8086 Microprocessor and Intel 8051 microcontroller	К3				
CO4	Understand the microprocessor/microcontroller architectures and programming concepts	K4				
CO5	Acquire the talent to implement the applications of microprocessor/microcontroller for data processing, electronic instrumentation and control systems according to the social needs.	К6				

Relationship Matrix:

Course Outcomes (COs)		Programn	ne Outco	mes (POs)	Programme Specific Outcomes (PSOs)					Mean Score of
	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO 5	COs
CO1	2	3	3	2	3	3	2	2	2	3	2.5
CO2	2	2	3	3	2	2	2	2	2	2	2.2
CO3	3	2	2	3	2	2	3	3	2	3	2.5
CO4	3	2	3	2	2	3	2	2	2	2	2.3
CO5	2	2	2	2	3	3	3	2	2	2	2.0
		<u>'</u>		<u>'</u>		•		Mea	n Overall	Score	2.3
									Corre	elation	Medium

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. A. Abbas Manthiri

Mr. S. Mohamed Ibrahim Sulaiman Sait

Comeston	C	Course Code	Course Cotegory	Hours/	Credits	Marks for Evaluation		
Semester	C		Course Category	Week	Creans	CIA	ESE	Total
III	231	PPH3DE3B	Discipline Specific Elective - III	6	4	25	75	100
Course Ti	tle		NONLIN	EAR OP	TICS			

	SYLLABUS	
Unit	Contents	Hours
I	Nonlinear Optical Susceptibility Introduction to Nonlinear Optics – Descriptions of Nonlinear Optical Interactions: - Second Harmonic Generation - Sum and Difference Frequency Generation - Optical Parametric Oscillation – Third Order Polarization - Third Harmonic Generation - Intensity Dependent Refractive Index - Self-focusing - Optical Bistability – Definition of Nonlinear Susceptibilities of a Classical Anharmonic Oscillator	18
II	Wave Equations for Nonlinear Optical Interaction The wave equation for Nonlinear Optical Media – The coupled – Wave Equations for sum – Frequency Generation – Phase Matching – The Manley – Rowe Relations – Mathematical Model for Difference Frequency Generation, Parametric Amplification and Second Harmonic Generation.	18
Ш	The Intensity – Dependent Refractive Index Nonlinear Refractive Index – Mathematical Descriptions of the Nonlinear Refractive Index – Tensor Nature of Nonlinear Higher-order Refractive Index – Propagation of Light Beam Through Isotropic Nonlinear Media – Nonlinear due to Molecular Orientation	18
IV	Optical Phase Conjugation Define Optical Phase Conjugation – Aberration Correction by Phase Conjugation – Phase Conjugation by Four-wave Mixing – Polarization Properties of phase conjugation – Self focusing of Light – Self-trapping of Light – Mathematical Model for Optical Bistability – Two Beam Coupling – Pulse Propagation Equation and Optical solitons.	18
V	Solitons in Optical fibers Optical Fiber Characteristics – Linear Dispersive Effects – Nonlinear Effects – Wave- envelope Propagation – Bright and Dark solitons – Experiments on Optical Solitons	18
VI	Current Trends (For CIA only) Applications of Optical Soliton: Optical Logic Gates – Optical Completation – Vector Optical Solitons and Their Interaction	ns

1. Robert W. Boyd, Nonlinear Optics, Academic Press, New York, 1992

Chapter I – Sections: 1.1, 1.2, 1.3, 1.4 (P. No: 1 – 32)

Chapter II - Sections: 2.1, 2.2, 2.3, 2.5, 2.6 (P. No: 58 - 84)

Chapter IV – Sections: 4.1, 4.2, 4.4 (P. No: 159 – 186)

Chapter VI - Sections: 6.1 - 6.5 (P. No: 242 - 282)

2. Michel Remoisssenet, Waves Called Solitons, Springer, New York, 1999 Chapter VIII – Sections: 8.1 – 8.5 (P. No: 204 – 225)

Reference Book(s):

1. M. Lakshman and S. Rajasekar, Nonlinear Dynamics, Integrobility, Chaos and patterns, Springer 2003

Web Resource(s):

1. https://www.brown.edu

	Course Outcomes								
Upon successful completion of this course, the student will be able to:									
CO No. CO Statement									
CO1	Remembering basic theory of polarization Electric field and susceptibility	K1							
CO2	Derive wave equation describing Nonlinear Optical Interaction	K2							
CO3	Applications of Nonlinear Optical effects	К3							
CO4	Analyze the Nonlinear refractive index	K4							
CO5	Generation Optical solitons in fibers – Developing secure communication	K6							

Course]	Programi	ne Outco	mes (POs)	Programme Specific Outcomes (PSOs)					Mean Score
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	3	3	3	3	3	3	3	2	2	3	2.8
CO2	3	3	3	2	2	2	2	3	3	3	2.7
CO3	3	3	3	3	2	3	2	2	3	2	2.9
CO4	3	3	3	3	3	3	3	3	3	3	2.9
CO5	3	3	2	3	3	3	3	2	3	3	2.8
Mean Overall Score									2.78		
									Cor	relation	High

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and $<$ 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. R. Radhakrishnan

Mrs. M. Ayisha

Semester	C	Course Code	Course Cotegowy	Hours/	Credits	Marks for Evaluation			
	C		Course Category	Week	Credits	CIA	ESE	Total	
IV	23	РРН4СС13	Core - XIII	6	6	25	75	100	
Course Ti	tle		CONDENSED N	MATTER	R PHYSIC	CS			

	SYLLABUS	
Unit	Contents	Hours
I	Crystals-Crystal lattice and translation vectors — Unit cell and primitive lattice - Types of lattices (3D) - number of atoms per unit cell, coordination number, atomic radius and packing factor of SC, BCC, FCC and HCP structures - Structure of Diamond and Sodium chloride - Miller indices Schottky and Frenkel defects (concepts only) - Reciprocal lattice - *X-ray diffraction* — Bragg's law - Powder crystal method -	18
П	Unit-II: Semiconductors, Lattice Vibrations and Thermal Property Intrinsic and Extrinsic semiconductors (definitions) — Carrier concentration and Fermi level for intrinsic semiconductors — Fermi level for extrinsic semiconductors (n-type and p-type) — Hall effect Lattice vibrations — *One dimensional Monatomic lattice* — Phonons — Phonon momentum — Debye's model of lattice heat capacity — Density of modes — Debye's approximation — Limitations	18
Ш	Unit-III: Free Electron Theory and Band Theory of Solids Drude - Lorentz's classical theory of free electron gas — Expression for thermal and electrical conductivity - Wiedemann-Franz Law — Bloch theorem —Kronig-Penny model — Energy Vs wave vector relationship - *Different representation of Brillouin zones* - velocity and effective mass of electron — Distinction between metals, insulators and semiconductors	18
IV	Unit-IV: Magnetism in Solids and Dielectrics Langevin's Classical theory of diamagnetism - quantum theory of paramagnetism -Weiss theory of ferromagnetism - Concept of domains and hysteresis -Nature and origin of Weiss molecular field *Polarization and Susceptibility* - Local field-Dielectric constant and Polarizability (Clausius-Mosotti Equation) - Sources of Polarizability - Frequency dependence of total polarizability - Ferroelectricity - Piezo electricity	18
v	Unit-V: Superconductivity Introduction – Meissner effect – Thermodynamical and optical properties – Type -I and Type-II superconductors- London equations – BCS theory- Quantum tunneling-Josephson tunneling- Theory of DC& DC Josephson effects- Applications- SQUID - High Tc superconductors – *Magnetic levitations*.	18

..... Self Study

Text Book(s):

- 1. Solid State Physics S.O.Pillai, New age International, 6th Edition (2003)
- 2. Solid State Physics R.K. Puri and V.K. Babbar, S. Chand & Company Ltd. (2009)
- 3. Solid State Physics Gupta, Kumar, Sharma, S. Chand & Company Ltd. (2003)

Unit- I: Page No.100 – 106, 115 – 134, 142-146, 154-156, 185-187, 189 – 190 (Book-1)

Unit – II: 199-204, 207 – 219, 103 – 110, 117 -121, 131 - 141 (Book-2) 305- 308 (Book-1)

Unit – III : Page No. 218 – 223 (Book – 3), 177 - 193 (Book-2)

Unit – IV : Page No. 230 – 233, 238 – 251, 265 – 276 (Book-2)

Unit – V : Page No. 410 – 426, 435- 448 (Book-1), 299 – 300 (Book-2)

Reference Book(s):

- 1. Introduction to Solid State Physics C.Kittel, Wiley Publication.
- 2. Solid State Physics R.K. Puri and V.K. Babbar, S. Chand & Company Ltd.
- 4. Solid State Physics Gupta Saxena, Prakathi Prakasan Publications.

Web Resource(s):

- 1. https://nptel.ac.in/courses/115/105/115105099/
- 2. https://www.crystalage.com/crystal_information/seven_crystal_systems/
- 3. http://www.tutorsglobe.com/homework-help/physics/lattice-vibration-75520.aspx
- 4. https://opentextbc.ca/universityphysicsv3openstax/chapter/band-theory-of-solids/
- 5. https://www.askiitians.com/iit-jee-electrostatics/dielectrics-and-polarisation/
- 6. https://opentextbc.ca/universityphysicsv3openstax/chapter/superconductivity/

	Course Outcomes								
Upon suc	cessful completion of this course, the student will be able to:								
CO No.	CO Statement	Cognitive Level (K-Level)							
CO1	Understand and explain the temperature dependence of electrical conductivity of metals.	K2							
CO2	Solve problems and predict electrical and thermal properties of solids and explain their origin	К3							
CO3	differentiate lattice types and explain the concepts of reciprocal lattice and crystal diffraction.	K4							
CO4	Analyse and conclude lattice vibrations and interaction between electrons and polarons	K5							
CO5	formulate the knowledge of superconductivity towards development of high temperature superconductors.	K6							

Course	-	Programı	ne Outco	mes (POs)	Programme Specific Outcomes (PSOs)					Mean Score	
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	2	3	3	2	2	3	3	3	2	2	2.5
CO2	3	3	3	2	2	3	2	1	1	2	2.2
CO3	3	3	3	1	2	2	2	2	2	3	2.3
CO4	3	3	2	2	2	3	3	3	1	3	2.5
CO5	2	3	2	2	2	2	3	3	2	2	2.3
Mean Overall Score									2.36		
Correlation									Medium		

Mean Overall Score	Correlation
< 1.5	Low
$\geq 1.5 \text{ and} < 2.5$	Medium
≥ 2.5	High

Course Coordinators:

Dr. C. Hariharan

Dr. S. Prabakaran

Semester	C	Course Code	Course Cotogowy	Hours/	Credits	Marks for Evaluation			
	C		Course Category	Week	Credits	CIA	ESE	Total	
IV	23	РРН4СС14	Core - XIV	6	6	25	75	100	
Course Title			ELECTRONIC (COMMU	NICATIO	ON			

	SYLLABUS	
Unit	Contents	Hours
I	Unit – I: Digital Modulation Bit rate, M-ary encoding, Baud and Minimum band width - Amplitude Shift Keying (ASK) – Frequency Shift Keying (FSK) – FSK transmitter and receiver – Binary Phase Shift Keying (BPSK) – BPSK receiver – Differential Binary Phase Shift Keying(DBPSK) *Quaternary Phase Shift Keying (QPSK) *– QPSK band width - QPSK transmitter and receiver	18
II	Unit – II: Digital transmission Pulse Modulation – PCM – PCM Sampling – Block diagram - Sampling Rate – Signal to quantization noise ratio – Coding Methods - Companding – Analog And Digital – Delta Modulation Transmitter and Receiver – Adaptive Delta Modulation - Differential PCM - *Time Division Multiplexing (TDM) *	18
III	Unit – III: Optical Fiber Communications Block diagram of an Optical Fiber Communication System – Optical Fiber types - Construction – Cable Configuration – Snell's law - critical angle – Acceptance angle, acceptance cone, and numerical aperture – *optical fiber configuration* – Mode Of Propagation – Index Profile – Single Mode and Multimode Step Index - Graded Index – optical fiber comparison – losses in optical fiber cables – power, absorption, Raleigh scattering, radiation and coupling -Chromatic or Wavelength Dispersion - modal dispersion (qualitative description only).	18
IV	Unit –IV: Antennas Basic Antenna Operation – Antenna equivalent circuit – Antenna coordinate system and radiation patterns –Near and Far fields – Radiation Resistance and Antenna Efficiency – Antenna Gain – Effective Isotropic Radiated Power(EIRP) –Antenna Polarization –Beam Width –Bandwidth – Antenna Input Impedance – *basic antenna* – Elementary Doublet –Grounded Antenna -Half Wave Dipole – Antenna Arrays – Broadside Array – End Fire Array –Parabolic Reflector Antenna – Reflectors –beam width – efficiency – power gain – Center Feed	18
V	Unit – V: Satellite Communications (18 Hours) *Kepler's laws* – Satellite Orbits – Satellite Elevation Categories – Satellite Orbital Patterns – Geosynchronous Satellites – Round Trip Time Delay Of Geosynchronous Satellites – Clarke Orbit – Advantages and disadvantages of Geosynchronous Satellites – Angle of Elevation – Azimuth Angle – Satellite System Link Models – Uplink and Downlink Model – Transponder – Satellite System Parameters – Back Off Lose – Transit Power and Bit Energy.	18
VI	Current Trends (For CIA only) – Artificial Intelligence (AI) – Omnichannel Strategies – Generation Technology (5G) – Internet of Things (IoT) – Blockchain Technology.	Fifth

^{*.....*} Self Study

Wayne Tomasi, Electronic Communications Systems Fundamentals Through Advanced, Pearson Education, Fifth Edition.2013

Unit – I: 9.2 - 9..5.2

Unit – II: 10.2 – 10.4.1, 10.5, 10.9 – 10.9.2, 10.12 – 10.14 & 11.2

Unit – III : 13.5 - 13.10

Unit – IV:15.2, 15.4, 15.5, 15.7, 15.8, 15.9, 15.10, 15.11, 15.12, 15.15.1, 15.15.2, 15.7.1,15.7.2.1

Unit – V: 25.3 - 25.6.2, & 25.9 - 25.9.3

Reference Book(s):

- 1. Louis E.Frenzel, Communication ElectronicsPrinciples and applications, Tata McGraw-Hill PublishingCompany Limited, Third edition, 2002.
- 2. Dennis Roddy JhonCoolen, Electronic Communications, EsternEconomy Edition, Fourth Edition.

Web Resource(s):

- 11. https://nptel.ac.in/courses/117/101/117101051/
- 2. https://swayam.gov.in/nd1_noc20_ee20/preview

	Course Outcomes								
Upon suc	Upon successful completion of this course, the student will be able to:								
CO No.	CO Statement	Cognitive Level (K-Level)							
CO1	Understand and identify the fundamental concepts and various components of analog communication systems.	K1							
CO2	Explain signal to noise ratio, noise figure and noise temperature for single and cascaded stages in a communication system.	K2							
CO3	Describe analog pulse modulation techniques and digital modulation technique.	K3							
CO4	Develop the ability to compare and contrast the strengths and weaknesses of various communication systems	K4							
CO5	Have a basic knowledge of the use of Satellite system and mobile services provided.	K5							
CO6	Explain and analyzes link budget of satellite signal for proper communication	K6							

Course	Programme Outcomes (POs)						Programme Specific Outcomes (PSOs)				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs
CO1	3	3	3	3	3	3	3	2	2	3	2.8
CO2	3	3	3	2	2	2	2	3	3	3	2.7
CO3	3	3	3	3	2	3	2	2	3	2	2.9
CO4	3	3	3	3	3	3	3	3	3	3	2.9
CO5	3	3	2	3	3	3	3	2	3	3	2.8
Mean Overall Score											2.78
Correlation											High

Mean Overall Score	Correlation
< 1.5	Low
$\geq 1.5 \text{ and} < 2.5$	Medium
≥ 2.5	High

Course Coordinators:

Dr. A. Mohamed Saleem

Dr. A. Abbas Manthiri

Semester	C	ounce Code	Course Cotogowy	Hours/	Credits	Marks for Evaluation			
		ourse Code	Course Category	Week	Credits	CIA	ESE	Total	
IV	23P	PH4CC15P1	CORE – XV	3	2	10	40	50	
Course Ti	tle	MICRO	PROCESSOR AND MI	CROCO	NTROLLI	ER - PR	ACTICA	AL	

S.No.	List of Experiments
1	16 Bit Arithmetic Operations using Intel 8086 Microprocessor
2	Sum of N numbers and Ascending/Descending order using Intel 8086 Microprocessor
3	Wave form generation using DAC 0800 using Intel 8051 Microcontroller
4	Interfacing of ADC 0808 using Intel 8051 Microcontroller
5	Interfacing of Hex key board using Intel 8051 Microcontroller
6	Interfacing of seven segment display using Intel 8051 Microcontroller
7	Stepper Motor control using Intel 8051 Microcontroller
8	Traffic light control using Intel 8051 Microcontroller

1. P. S. Manoharan, Microprocessor and Microcontroller, Charulatha Publications, Reprint 2020

Reference Book(s):

1. V. Vijayendran, Fundamentals of Microprocessor 8086: Architecture Programming (MASM) and Interfacing, Viswanathan, S., Printers & Publishers Pvt Ltd, 2009. Vi microsystems Pvt.Ltd.

Web Resource(s):

- 1. https://www.academia.edu
- 2. https://www.tutorialspoint.com/index.html

	Course Outcomes									
Upon suc	Upon successful completion of this course, the student will be able to:									
CO No. CO Statement										
		(K-Level)								
CO1	Write ALP for arithmetic operations and sorting the numbers in an array.	K1								
CO2	Implement the interfacing principles and generate wave forms	K2								
CO3	Stepper motor control and traffic light control and other some similar projects	К3								
CO4	Explore possible applications beneficial to the society	K5								
CO5	To carry out simple electronic, microprocessor and microcontroller projects to help the society with required applications	K6								

Relationship Matrix:

Course]	Program	ne Outco	mes (POs	Programme Specific Outcomes (PSOs)					Mean Score	
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	of COs
CO1	2	3	3	2	3	3	3	3	2	3	2.7
CO2	3	3	3	2	2	3	2	1	1	2	2.2
CO3	3	2	3	2	3	3	2	3	2	3	2.6
CO4	3	3	2	3	2	3	2	3	1	3	2.5
CO5	2	3	2	2	2	2	3	3	2	3	2.4
Mean Overall Score											
	Correlation										

Mean Overall Score	Correlation
< 1.5	Low
$\geq 1.5 \text{ and} < 2.5$	Medium
≥ 2.5	High

Course Coordinators:

Dr. R. Radhakrishnan

Mrs. G. Pragadeeswari

	Semester	Co	urse Code	Course Category	Hours/	Credits	Marks for Evaluation		
		Cu	urse Code	Course Category	Week	Credits	CIA	ESE	Total
	IV	23PI	PH4CC15P2	CORE - XV	3	2	10	40	50
Course Title				umerical Simulations in	Physics u	sing Pytho	on - Prac	ctical	

S.No.	List of Experiments
1	Solution of Ordinary Differential Equation using RK4 Method: Time Plots and Phase
1	Portraits of a Duffing Oscillator
2	Discrete Fourier Transform: Decomposition of the momentum components of an electron
	wave packet
3	Noise Reduction using Fast Fourier Transforms and Auto-correlation function
4	Surface plots of the currents in an LCR circuit
5	Relativistic Bound States of a Klein-Gordon Equation
6	Bound states of a one-dimensional harmonic oscillator
7	Linear Least Squares Fit: Spectrum of Black Body Radiation
8	Simulation of Spontaneous Radioactive Decay
9	Bound states of Hydrogen Atom
10	Random Walk: Brownian Motion

- 1. Rubin H. Landau and Manuel Jose Paez, Computational Problems for Physics with Guided Solutions Using Python, CRC Press, Taylor & Francis Group, USA,(2018).
- 2. Anthony Scopatz and Kathryn D. Huff, Effective Computation in Physics: Field Guide to Research with Python, O'Reilly Media Inc., CA. USA, (2015)

Reference Book(s):

- 1. Jake VanderPlas, Python Data Science Handbook, O'Reilly Media Inc., CA. USA, (2017)
- 2. Paul Deitel and Harvey Deitel, Python for Programmers, Pearson India Education Services Pvt. Ltd. India, (2020)

Web Resource(s):

http://physics.oregonstate.edu/landaur/Books/CPbook/eBook/Lectures

	Course Outcomes									
Upon suc	Upon successful completion of this course, the student will be able to:									
CO No.	CO Statement	Cognitive Level (K-Level)								
CO1	acquire the basic knowledge of the constructs of Python language and the skill to write simple and efficient codes in it.	К3								
CO2	learn the computational methods such as RK4 algorithm, Fast Fourier Transforms, Random Number generation etc.	К3								
CO3	apply numerical methods so learnt to solve the mathematical models of many physical systems	K4								
CO4	Use graphical results to corelate the theoretical results of many classical and quantum systems	K5								
CO5	To apply the skill so developed to newer physical problems independently	K6								

Relationship Matrix:

readionip matrix.											Mean
Course	Programme Outcomes (POs)						Programme Specific Outcomes (PSOs)				
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs
CO1	3	3	3	3	1	3	3	2	2	3	2.6
CO2	3	3	3	1	2	3	3	3	2	1	2.4
CO3	3	3	3	3	3	3	3	3	2	1	2.7
CO4	3	3	3	2	2	3	3	3	3	1	2.7
CO5	3	3	3	3	2	3	3	3	3	2	2.8
Mean Overall Score											
Correlation											High

Mean Overall Score	Correlation
< 1.5	Low
$\geq 1.5 \text{ and} < 2.5$	Medium
≥ 2.5	High

Course Coordinators:

Dr. A. Ishaq Ahamed

Mr. J. Umar Malik

Semester	C	ourse Code	rse Code Course Category Hours/ Credits		Marks for Evaluation			
Semester	C	Juise Code	Course Category	Week	Credits	CIA	ESE	Total
IV	231	PPH4DE4A	PPH4DE4A Discipline Specific Elective - IV 6 4		25	75	100	
Course Title CRYSTAL GROWTH AND THIN FILMS								

	SYLLABUS	
Unit	Contents	Hours
I	Nucleation and Nucleation theory Solution, Solubility and Super solubility – Expression of Super saturation – Meir's solubility diagram – Measurement of metastable zone width of solution, induction period, Gibb's free energy, interfacial tension and critical radius for crystallization- Classical theory of nucleation: Energy formation of a nucleus – Spherical nucleus –*Cylindrical nucleus*.	18
II	Low Temperature Solution growth Crystallization by slow cooling method and slow evaporation method – Temperature gradient method – Sankaranarayanan Ramasamy (SR) method - Gel growth – Principle of gel growth – various types of gel – Structure of gel – Growth of Crystals in gels – *Importance of gel technique*.	18
III	Other Crystal growth techniques and nanomaterials High Temperature solution growth (Flux growth) –Choice of flux - Melt growth methods: Czochralski and Bridgeman methods - Importance of nanomaterials Bottom-up and Top-down approaches—Surface area to volume ratiosynthesis of metal and metal oxide nanoparticles: Co-precipitation, sol-gel-Applications of nanomaterials	18
IV	Preparation of Thin film Physical Method: DC sputtering – Laser beam evaporation – Electron Beam Evaporation – Chemical methods: – Pyrolysis — Disproportionation method – *Chemical deposition* – Electrodeposition – Massmethod (Micro balance technique) – Optical method (Photometric) – *Applications of thin films*.	18
v	Thin film characterization X-ray microanalysis –Hall Effect measurement-*Electron Microscopy* – Scanning Electron Microscopy (SEM)–Atomic Force Microscopy (AFM)- Auger Electron Spectroscopy (AES). X-Ray Photo Electron Spectroscopy (XPES) – *Scanning Tunneling Microscopy (STM)* - Secondary Ion Mass Spectrometry (SIMS).	18

^{*....*} Self Study

- 1. Crystal Growth, Dr. P. SanthanaRaghavan and Dr. P. Ramasamy, KRU Publications.
- 2. C.P. Poole and F.J. Owens, "Introduction to Nanotechnology", Wiley- Interscience, (2003).

Reference Book(s):

1. Thin Film Fundamentals, A. Goswami, Reprint, 2008, New Age International Publishers.

Web Resource(s):

https://www.aimspress.com/article/10.3934/matersci.2019.2.174/pdf

http://www.physics.uwo.ca/~lgonchar/courses/p9812/Lecture14_Growth.pdf

Course Outcomes Upon successful completion of this course, the student will be able to: Cognitive CO No. **CO Statement** Level (K-Level) CO₁ Understand various nucleation theories in crystal growth. **K2** Apply the knowledge of solution growth and experiment methods to grow CO₂ **K2** crystals. Conceptualize the methods of crystal growth from melt and synthesis of CO3 **K3** nanomaterials. CO4 Understand various thin film techniques and apply to various fields. **K3** CO5 Analysing the thin films by microscopic and spectroscopic methods. **K2**

Course Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)					
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs	
CO1	2	3	3	2	2	3	3	3	2	2	2.5	
CO2	3	3	3	2	2	3	2	1	1	2	2.2	
CO3	3	3	3	1	2	2	2	2	2	3	2.3	
CO4	3	3	2	2	2	3	3	3	1	3	2.5	
CO5	2	3	2	2	2	2	3	3	2	2	2.3	
		•		•	•	•	•	Me	an Overa	ll Score	2.36	
									Cor	relation	Medium	

Mean Overall Score	Correlation
< 1.5	Low
\geq 1.5 and < 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. R. Raj Muhamed

Dr. A.S. Haja Hameed

Compaton	Cauras Cada	odo Course Cotegory		Credits	Marks for Evaluation			
Semester	Course Code	Course Category	Week	Creans	CIA	ESE	Total	
IV	23PPH4DE4B	DISCIPLINE SPECIFIC ELECTIVE - IV	6	4	25	75	100	
Course Ti	tle	FIBRE OPTICS AN	D ITS A	PPLICAT	IONS			

SYLLABUS					
Unit	Contents	Hours			
I	Optical fibre Propagation of light waves in an optical fibre – Basic structure and propagation of light of an optical fibre – Acceptance angle and Acceptance cone of a fibre – Numerical aperture – Numerical aperture of a graded index fibre - Modes of propagation–Meridional and Skew rays – Number of modes and cutoff parameters of fibres – Single mode propagation – *Applications of fibres*.	18			
II	Classification of Optical fibres Stepped Index fibre – Stepped Index monomode fibre – Disadvantages - Graded Index multimode fibre - Comparison of step and graded index fibres – *Plastic fibres* – Other latest developed types of optical fibres – Fibre strength-Mechanical strength measurement of fibres.	18			
III	Fibre Losses Attenuation in optic fibres – Material losses - Impurity losses - Rayleigh scattering loss - Absorption loss – Leaky modes - Bending losses – Radiation Induced losses – Inherent defect losses – Inverse square law losses – Transmission losses - Temperature dependence of fibre losses – *Core and cladding losses*.	18			
IV	Light sources for optical fibres LED – Structures of LED - LED materials – Output power characteristics of LED – Fibre – LED Coupling – Modulation bandwidth of LED – Spectral emission of LEDs – Laser – semiconductor laser diode – Current vs Output power characteristics of a Laser – Modulation response of Laser – Laser chirp - Organic LEDs – Power efficiency - Structure and Operation – *Quantum efficiency *.	18			
v	Telecommunication and Network Applications The Data link System – Optical Data Highway System Components – Optical Electrical Interface – Optical Fibre Cable - Network Transport Architecture – LAN Structure – Ethernet – Synchronous Optical Network (SONET) – SONET Standards –SONET Architecture – Medium Access Control Protocols – Code Division Multiple Access (CDMA)	18			

^{*....*} Self Study

1. Dr. Subir kumar Sarkar, Optical fibres and fibre optic communication systems, S. Chand & Company Ltd, Revised 4th Edition, 2010

Unit 1 Chapter 2 Section 2.2 – 2.12

Unit II Chapter 3 Section 3.1 – 3.10

Unit III Chapter 7 Section 7.1 – 7.12

Unit IV Chapter 9 Section 9.2.2 – 9.4.5

2. S.C. Gupta, Textbook on Optical Fibre Communication and Its Applications, PHI Learning Private Limited, 3rd Edition, 2018.

Unit V Chapter 8 & 9 Section 8.2.1 – 8.2.4 & 9.3 – 9.5

Reference Book(s):

- 1. John M. Senior, Optical Fibre Communication, Pearson Education, 2nd edition, 2007
- 2. Gerd Keiser, Optical Fibre Communication, McGraw Hill, 3rd edition, 2000.

Web Resource(s):

- $1.\ \underline{https://www.ukessays.com/essays/physics/fiber-optics-and-its-applications.php}$
- 2.https://books.google.co.in/books?id=oG58DwAAQBAJ&printsec=frontcover&redir_esc=y#v=onepage&q&f=false
- 3.https://www.techtarget.com/searchnetworking/definition/fiber-optics-optical-fiber

	Course Outcomes						
Upon suc	Upon successful completion of this course, the student will be able to:						
CO No.	CO Statement	Cognitive Level (K-Level)					
CO1	Remembering the basic elements of optical fibre transmission link, fibre modes configurations and structures	K1					
CO2	Understanding the different kind of losses and analyze the propagation characteristics of an optical signal in different types of fibers	K2					
CO3	Applying the various light sources for optical fibres	К3					
CO4	Analyzing different tools and instruments used in optical experiments	K4					
CO5	Creating the design of optical systems and solve problems with various optical phenomena	K6					

Course Programme Outcomes (POs)							Programme Specific Outcomes (PSOs)					
Outcomes (COs)	PO1	PO2	PO3	PO4	PO5	PSO1	PSO2	PSO3	PSO4	PSO5	Score of COs	
CO1	3	3	3	3	3	3	3	2	2	3	2.8	
CO2	3	3	3	2	3	2	2	3	3	3	2.7	
CO3	3	3	3	3	3	3	2	2	3	2	2.7	
CO4	3	3	3	3	2	3	3	3	3	3	2.9	
CO5	3	3	2	3	3	3	3	2	3	3	2.8	
		•	•	•	•	•	•	Mear	o Overal	Score	2.78	
									Corr	elation	HIGH	

Mean Overall Score	Correction
< 1.5	Low
\geq 1.5 and \leq 2.5	Medium
≥ 2.5	High

Course Coordinators:

Dr. S. Abbas Manthiri

Dr. S. Shek Dhavud